Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(54): 35072-35082, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36540267

ABSTRACT

Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup.

2.
Chemistry ; 28(64): e202201068, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-35789121

ABSTRACT

Fifteen N-butylpyridinium salts - five monometallic [C4 Py]2 [MBr4 ] and ten bimetallic [C4 Py]2 [M0.5 a M0.5 b Br4 ] (M=Co, Cu, Mn, Ni, Zn) - were synthesized, and their structures and thermal and electrochemical properties were studied. All the compounds are ionic liquids (ILs) with melting points between 64 and 101 °C. Powder and single-crystal X-ray diffraction show that all ILs are isostructural. The electrochemical stability windows of the ILs are between 2 and 3 V. The conductivities at room temperature are between 10-5 and 10-6  S cm-1 . At elevated temperatures, the conductivities reach up to 10-4  S cm-1 at 70 °C. The structures and properties of the current bromide-based ILs were also compared with those of previous examples using chloride ligands, which illustrated differences and similarities between the two groups of ILs.

3.
ChemistryOpen ; 10(2): 272-295, 2021 02.
Article in English | MEDLINE | ID: mdl-33751846

ABSTRACT

Metal sulfides are among the most promising materials for a wide variety of technologically relevant applications ranging from energy to environment and beyond. Incidentally, ionic liquids (ILs) have been among the top research subjects for the same applications and also for inorganic materials synthesis. As a result, the exploitation of the peculiar properties of ILs for metal sulfide synthesis could provide attractive new avenues for the generation of new, highly specific metal sulfides for numerous applications. This article therefore describes current developments in metal sulfide nanoparticle synthesis as exemplified by a number of highlight examples. Moreover, the article demonstrates how ILs have been used in metal sulfide synthesis and discusses the benefits of using ILs over more traditional approaches. Finally, the article demonstrates some technological challenges and how ILs could be used to further advance the production and specific property engineering of metal sulfide nanomaterials, again based on a number of selected examples.

4.
ACS Appl Bio Mater ; 4(6): 4737-4743, 2021 06 21.
Article in English | MEDLINE | ID: mdl-35007023

ABSTRACT

We developed lipid-like ionic liquids, containing 2-mercaptoimidazolium and 2-mercaptothiazolinium headgroups tethered to two long saturated alkyl chains, as carriers for in vitro delivery of plasmid HEK DNA into 293T cells. We employed a combination of modular design, synthesis, X-ray analysis, and computational modeling to rationalize the self-assembly and desired physicochemical and biological properties. The results suggest that thioamide-derived ionic liquids may serve as a modular platform for lipid-mediated gene delivery. This work represents a step toward understanding the structure-function relationships of these amphiphiles with long-range ordering and offering insight into design principles for synthetic vectors based on self-assembly behavior.


Subject(s)
Gene Transfer Techniques , Ionic Liquids/administration & dosage , Lipids/administration & dosage , DNA/administration & dosage , Green Fluorescent Proteins/genetics , HEK293 Cells , Humans , Plasmids , Structure-Activity Relationship
5.
Chemistry ; 26(72): 17504-17513, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-32841435

ABSTRACT

Thirteen N-butylpyridinium salts, including three monometallic [C4 Py]2 [MCl4 ], nine bimetallic [C4 Py]2 [M1-x a Mx b Cl4 ] and one trimetallic compound [C4 Py]2 [M1-y-z a My b Mz c Cl4 ] (M=Co, Cu, Mn; x=0.25, 0.50 or 0.75 and y=z=0.33), were synthesized and their structure and thermal and electrochemical properties were studied. All compounds are ionic liquids (ILs) with melting points between 69 and 93 °C. X-ray diffraction proves that all ILs are isostructural. The conductivity at room temperature is between 10-4 and 10-8  S cm-1 . Some Cu-based ILs reach conductivities of 10-2  S cm-1 , which is, however, probably due to IL dec. This correlates with the optical bandgap measurements indicating the formation of large bandgap semiconductors. At elevated temperatures approaching the melting points, the conductivities reach up to 1.47×10-1  S cm-1 at 70 °C. The electrochemical stability windows of the ILs are between 2.5 and 3.0 V.

SELECTION OF CITATIONS
SEARCH DETAIL
...