Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
AJNR Am J Neuroradiol ; 40(12): 2146-2153, 2019 12.
Article in English | MEDLINE | ID: mdl-31727742

ABSTRACT

BACKGROUND AND PURPOSE: We used diffusion MR imaging to investigate the structural brain connectivity networks in juvenile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disease of childhood. Although changes in conventional MR imaging are typically not visually apparent in children aged <10 years, we previously found significant microstructural abnormalities by using diffusion MR imaging. Therefore, we hypothesized that the structural connectivity networks would also be affected in the disease. MATERIALS AND METHODS: We acquired diffusion MR imaging data from 14 children with juvenile neuronal ceroid lipofuscinosis (mean ± SD age, 9.6 ± 3.4 years; 10 boys) and 14 control subjects (mean ± SD age, 11.2 ± 2.3 years; 7 boys). A follow-up MR imaging was performed for 12 of the patients (mean ± SD age, 11.4 ± 3.2 years; 8 boys). We used graph theoretical analysis to investigate the global and local properties of the structural brain connectivity networks reconstructed with constrained spherical deconvolution-based whole-brain probabilistic tractography. RESULTS: We found significantly increased characteristic path length (P = .003) and decreased degree (P = .003), which indicated decreased network integration and centrality in children with juvenile neuronal ceroid lipofuscinosis. The findings were similar for the follow-up MR imaging, and there were no significant differences between the two acquisitions of the patients. In addition, we found that the disease severity correlated negatively (P < .007) with integration, segregation, centrality, and small-worldness of the networks. Moreover, we found significantly (P < .0003) decreased local efficiency in the left supramarginal gyrus and temporal plane, and decreased strength in the right lingual gyrus. CONCLUSIONS: We found significant global and local network alterations in juvenile neuronal ceroid lipofuscinosis that correlated with the disease severity and in areas related to the symptomatology.


Subject(s)
Brain/pathology , Nerve Net/pathology , Neuronal Ceroid-Lipofuscinoses/pathology , Brain/diagnostic imaging , Child , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Image Interpretation, Computer-Assisted/methods , Male , Nerve Net/diagnostic imaging , Neuroimaging/methods , Neuronal Ceroid-Lipofuscinoses/diagnostic imaging
2.
AJNR Am J Neuroradiol ; 39(7): 1349-1354, 2018 07.
Article in English | MEDLINE | ID: mdl-29853519

ABSTRACT

BACKGROUND AND PURPOSE: Juvenile neuronal ceroid lipofuscinosis is a progressive neurodegenerative lysosomal storage disease of childhood. It manifests with loss of vision, seizures, and loss of cognitive and motor functions leading to premature death. Previous MR imaging studies have reported cerebral and cerebellar atrophy, progressive hippocampal atrophy, thalamic signal intensity alterations, and decreased white matter volume in the corona radiata. However, conventional MR imaging findings are usually normal at younger than 10 years of age. The purpose of our study was to investigate whether diffusion MR imaging could reveal changes in white matter microstructure already present at a younger age. MATERIALS AND METHODS: We investigated global and local white matter abnormalities in 14 children with juvenile neuronal ceroid lipofuscinosis (mean age, 9.6 ± 3.4 years; 10 boys) and 14 control subjects (mean age, 11.2 ± 2.3 years; 7 boys). Twelve patients underwent follow-up MR imaging after 2 years (mean age, 11.4 ± 3.2 years; 8 boys). We performed a global analysis using 2 approaches: white matter tract skeleton and constrained spherical deconvolution-based whole-brain tractography. Then, we investigated local microstructural abnormalities using Tract-Based Spatial Statistics. RESULTS: We found globally decreased anisotropy (P = .000001) and increased diffusivity (P = .001) in patients with juvenile neuronal ceroid lipofuscinosis. In addition, we found widespread increased diffusivity and decreased anisotropy in, for example, the corona radiata (P < .001) and posterior thalamic radiation (P < .001). However, we found no differences between the first and second acquisitions. CONCLUSIONS: The patients with juvenile neuronal ceroid lipofuscinosis exhibited global and local abnormalities in white matter microstructure. Future studies could apply more specific microstructural models and study whether these abnormalities are already present at a younger age.


Subject(s)
Diffusion Tensor Imaging/methods , Neuronal Ceroid-Lipofuscinoses/diagnostic imaging , Neuronal Ceroid-Lipofuscinoses/pathology , White Matter/diagnostic imaging , White Matter/pathology , Brain/diagnostic imaging , Brain/pathology , Child , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...