Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 19(9)2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30200383

ABSTRACT

Green cincau (Premna oblongifolia Merr.) is a traditional food of Indonesia and provides a natural source of dietary fibre and antioxidants. This study evaluated the ability of green cincau, and other dietary fibres with or without the addition of anti-oxidant, epigallocatechin-3-gallate (EGCG), to prevent colorectal cancer in a 12 week azoxymethane (AOM) rat model. While all dietary treatments stimulated short chain fatty acid production (SCFA) in the digesta and faeces, no one treatment was able to significantly protect against aberrant crypt formation (ACF), when compared to the control diet. However, feeding green cincau leaves or extracts did not result in an increase in ACF compared to the control diet. Unexpectedly, when the dietary fibre source was pectin, 0.1% EGCG increased proliferative activity and liver lipid peroxidation when compared to the control diet containing cellulose. Examination of faecal microbial communities identified the presence of short chain acid producing bacteria, but a distinct community profile was not observed from any individual diet group. Overall, this research implies that combining dietary fibre with an antioxidant does not automatically equate to a beneficial response. Further work is required to investigate the health-promoting properties of green cincau.


Subject(s)
Colonic Neoplasms/prevention & control , Dietary Fiber/therapeutic use , Fatty Acids, Volatile/metabolism , Lamiaceae/chemistry , Animals , Azoxymethane/toxicity , Cells, Cultured , Colon/drug effects , Colon/metabolism , Colon/microbiology , Colonic Neoplasms/etiology , Dietary Fiber/pharmacology , Gastrointestinal Microbiome , Lipid Peroxidation , Male , Rats , Rats, Sprague-Dawley
3.
Bioresour Technol ; 166: 534-40, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24951940

ABSTRACT

The main objective of the present study is aimed to optimize the process parameters for the production of glucose from karanja seed cake. The Taguchi robust design method with L9 orthogonal array was applied to optimize hydrolysis reaction conditions and maximize sugar yield. Effect of temperature, acid concentration, and acid to cake weight ratio were considered as the main influencing factors which effects the percentage of glucose and amount of glucose formed. The experimental results indicated that acid concentration and liquid to solid ratio had a principal effect on the amount of glucose formed when compared to that of temperature. The maximum glucose formed was 245 g/kg extractive free cake.


Subject(s)
Glucose/metabolism , Pongamia/chemistry , Analysis of Variance , Biofuels , Biomass , Carbohydrate Metabolism , Carbohydrates/chemistry , Conservation of Natural Resources/methods , Hydrolysis , Lignin/metabolism , Plant Proteins/metabolism , Pongamia/metabolism
4.
Sci Total Environ ; 414: 585-91, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22154183

ABSTRACT

In this study, the impact of bacterial and fungal processes on (14)C-hexadecane mineralisation was investigated in weathered hydrocarbon contaminated soil. The extent of (14)C-hexadecane mineralisation varied depending on the bioremediation strategy employed. Under enhanced natural attenuation conditions, (14)C-hexadecane mineralisation after 98 days was 8.5 ± 3.7% compared to <1.2% without nitrogen and phosphorus additions. (14)C-hexadecane mineralisation was further enhanced through Tween 80 amendments (28.9 ± 2.4%) which also promoted the growth of a Phanerochaete chyrsosporium fungal mat. Although fungal growth in weathered hydrocarbon contaminated soil could be promoted through supplementing additional carbon sources (Tween 80, sawdust, compost, pea straw), fungal (14)C-hexadecane mineralisation was negligible when sodium azide was added to soil microcosms to inhibit bacterial activity. In contrast, when fungal activity was inhibited through nystatin additions, (14)C-hexadecane mineralisation ranged from 6.5 ± 0.2 to 35.8 ± 3.8% after 98 days depending on the supplied amendment. Bacteria inhibition with sodium azide resulted in a reduction in bacterial diversity (33-37%) compared to microcosms supplemented with nystatin or microcosms without inhibitory supplements. However, alkB bacterial groups were undetected in sodium azide supplemented microcosms, highlighting the important role of this bacterial group in (14)C-hexadecane mineralisation.


Subject(s)
Alkanes/chemistry , Bacteria/metabolism , Carbon Radioisotopes/metabolism , Petroleum/analysis , Phanerochaete/metabolism , Soil Pollutants/analysis , Analysis of Variance , Bacteria/drug effects , Bacteria/genetics , Biodegradation, Environmental , Cluster Analysis , Nitrogen , Nystatin/pharmacology , Phanerochaete/drug effects , Phanerochaete/growth & development , Phosphorus , Polymerase Chain Reaction , Polysorbates/pharmacology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sodium Azide
5.
Chemosphere ; 81(9): 1061-8, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20947131

ABSTRACT

In this study, the bioaccessibility of petroleum hydrocarbons in aged contaminated soils (1.6-67gkg(-1)) was assessed using four non-exhaustive extraction techniques (100% 1-butanol, 100% 1-propanol, 50% 1-propanol in water and hydroxypropyl-ß-cyclodextrin) and the persulfate oxidation method. Using linear regression analysis, residual hydrocarbon concentrations following bioaccessibility assessment were compared to residual hydrocarbon concentrations following biodegradation in laboratory-scale microcosms in order to determine whether bioaccessibility assays can predict the endpoint of hydrocarbon biodegradation. The relationship between residual hydrocarbon concentrations following microcosm biodegradation and bioaccessibility assessment was linear (r(2)=0.71-0.97) indicating that bioaccessibility assays have the potential to predict the extent of hydrocarbon biodegradation. However, the slope of best fit varied depending on the hydrocarbon fractional range assessed. For the C(10)-C(14) hydrocarbon fraction, the slope of best fit ranged from 0.12 to 0.27 indicating that the non-exhaustive or persulfate oxidation methods removed 3.5-8 times more hydrocarbons than biodegradation. Conversely, for the higher molecular weight hydrocarbon fractions (C(29)-C(36) and C(37)-C(40)), biodegradation removed up to 3.3 times more hydrocarbons compared to bioaccessibility assays with the resulting slope of best fit ranging from 1.0-1.9 to 2.0-3.3 respectively. For mid-range hydrocarbons (C(15)-C(28)), a slope of approximately one was obtained indicating that C(15)-C(28) hydrocarbon removal by these bioaccessibility assays may approximate the extent of biodegradation. While this study demonstrates the potential of predicting biodegradation endpoints using bioaccessibility assays, limitations of the study include a small data set and that all soils were collected from a single site, presumably resulting from a single contamination source. Further evaluation and validation is required using soils from a range of hydrocarbon contamination sources in order to develop robust assays for predicting bioremediation endpoints in the field.


Subject(s)
Environmental Restoration and Remediation/methods , Hydrocarbons/metabolism , Petroleum , Soil Pollutants/metabolism , Biodegradation, Environmental , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...