Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Infect Dis ; 229(6): 1702-1710, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38213276

ABSTRACT

Definitive data demonstrating the utility of coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) for treating immunocompromised patients remains elusive. To better understand the mechanism of action of CCP, we studied viral replication and disease progression in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected hamsters treated with CCP obtained from recovered COVID-19 patients that were also vaccinated with an mRNA vaccine, hereafter referred to as Vaxplas. Vaxplas transiently enhanced disease severity and lung pathology in hamsters treated near peak viral replication due to immune complex and activated complement deposition in pulmonary endothelium, and recruitment of M1 proinflammatory macrophages into the lung parenchyma. However, aside from one report, transient enhanced disease has not been reported in CCP recipient patients, and the transient enhanced disease in Vaxplas hamsters may have been due to mismatched species IgG-FcR interactions, infusion timing, or other experimental factors. Despite transient disease enhancement, Vaxplas dramatically reduced virus replication in lungs and improved infection outcome in SARS-CoV-2-infected hamsters.


Subject(s)
Antibodies, Viral , COVID-19 Serotherapy , COVID-19 Vaccines , COVID-19 , Immunization, Passive , Lung , SARS-CoV-2 , Virus Replication , Animals , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Cricetinae , Lung/virology , Lung/immunology , Lung/pathology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Humans , Mesocricetus , Disease Models, Animal , Male , Female
2.
Neuroreport ; 34(16): 786-791, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37695589

ABSTRACT

Zika virus' neural tropism causes significant neural pathology, particularly in developing fetuses. One of the consistent findings from humans and animal models is that prenatal exposure to Zika virus (ZIKV) causes pathology in the eyes and visual pathways of the brain, although the extent to which this pathology persists over development is not clear. In the present report, we build upon our previous work which demonstrated that full-term rhesus monkey ( Macaca mulatta ) fetuses who were exposed to ZIKV early in gestation had significant pathological abnormalities to the organization of the lateral geniculate nucleus (LGN), a major hub of the visual network. The objective of the present work was to replicate those LGN findings and determine whether such pathology persisted across childhood development. We carried out histological analyses of the LGNs of two juvenile rhesus monkeys who were prenatally exposed to ZIKV and two age-matched controls. Pregnant rhesus monkeys were infected with ZIKV via the intravenous and intra-amniotic routes and tracked across development. Following sacrifice and perfusion, brains were subjected to quantitative neuroanatomical analyses with a focus on the size and structure of the LGN and its composite layers. Early fetal ZIKV exposure resulted in developmental abnormalities within the brains' visual pathway: specifically disorganization, blending of layers, laminar discontinuities, and regions of low cell density within the LGN. These abnormalities were not observed in the control animals. Our findings demonstrate that the ZIKV's damage to the LGN that occurs during fetal development persists into childhood.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Pregnancy , Female , Humans , Child , Macaca mulatta , Geniculate Bodies , Visual Pathways
3.
bioRxiv ; 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37662344

ABSTRACT

The utility of COVID-19 convalescent plasma (CCP) for treatment of immunocompromised patients who are not able to mount a protective antibody response against SARS-CoV-2 and who have contraindications or adverse effects from currently available antivirals remains unclear. To better understand the mechanism of protection in CCP, we studied viral replication and disease progression in SARS-CoV-2 infected hamsters treated with CCP plasma obtained from recovered COVID patients that had also been vaccinated with an mRNA vaccine, hereafter referred to as Vaxplas. We found that Vaxplas dramatically reduced virus replication in the lungs and improved infection outcome in SARS-CoV-2 infected hamsters. However, we also found that Vaxplas transiently enhanced disease severity and lung pathology in treated animals likely due to the deposition of immune complexes, activation of complement and recruitment of increased numbers of macrophages with an M1 proinflammatory phenotype into the lung parenchyma.

4.
PLoS One ; 18(8): e0289139, 2023.
Article in English | MEDLINE | ID: mdl-37552656

ABSTRACT

The rapid emergence and global dissemination of SARS-CoV-2 that causes COVID-19 continues to cause an unprecedented global health burden resulting in nearly 7 million deaths. While multiple vaccine countermeasures have been approved for emergency use, additional treatments are still needed due to sluggish vaccine rollout, vaccine hesitancy, and inefficient vaccine-mediated protection. Immunoadjuvant compounds delivered intranasally can guide non-specific innate immune responses during the critical early stages of viral replication, reducing morbidity and mortality. N-dihydrogalactochitosan (GC) is a novel mucoadhesive immunostimulatory polymer of ß-0-4-linked N-acetylglucosamine that is solubilized by the conjugation of galactose glycans with current applications as a cancer immunotherapeutic. We tested GC as a potential countermeasure for COVID-19. GC was well-tolerated and did not produce histopathologic lesions in the mouse lung. GC administered intranasally before and after SARS-CoV-2 exposure diminished morbidity and mortality in humanized ACE2 receptor expressing mice by up to 75% and reduced infectious virus levels in the upper airway. Fluorescent labeling of GC shows that it is confined to the lumen or superficial mucosa of the nasal cavity, without involvement of adjacent or deeper tissues. Our findings demonstrate a new application for soluble immunoadjuvants such as GC for preventing disease associated with SARS-CoV-2 and may be particularly attractive to persons who are needle-averse.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Animals , Acetylglucosamine , Virus Replication
5.
Am J Pathol ; 193(6): 690-701, 2023 06.
Article in English | MEDLINE | ID: mdl-36906263

ABSTRACT

Clinical evidence of vascular dysfunction and hypercoagulability as well as pulmonary vascular damage and microthrombosis are frequently reported in severe cases of human coronavirus disease 2019 (COVID-19). Syrian golden hamsters recapitulate histopathologic pulmonary vascular lesions reported in patients with COVID-19. Herein, special staining techniques and transmission electron microscopy further define vascular pathologies in a Syrian golden hamster model of human COVID-19. The results show that regions of active pulmonary inflammation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are characterized by ultrastructural evidence of endothelial damage with platelet marginalization and both perivascular and subendothelial macrophage infiltration. SARS-CoV-2 antigen/RNA was not detectable within affected blood vessels. Taken together, these findings suggest that the prominent microscopic vascular lesions in SARS-CoV-2-inoculated hamsters likely occur due to endothelial damage followed by platelet and macrophage infiltration.


Subject(s)
COVID-19 , Vascular Diseases , Cricetinae , Animals , Humans , Mesocricetus , SARS-CoV-2 , COVID-19/pathology , Lung/pathology , Vascular Diseases/pathology , Disease Models, Animal
6.
J Orthop Res ; 41(9): 1945-1952, 2023 09.
Article in English | MEDLINE | ID: mdl-36815216

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has infected more than 650 million people worldwide. Approximately 23% of these patients developed lasting "long-haul" COVID symptoms, including fatigue, joint pain, and systemic hyperinflammation. However, the direct clinical impact of SARS-CoV-2 infection on the skeletal system including bone and joint health has not been determined. Utilizing a humanized mouse model of COVID-19, this study provides the first direct evidence that SARS-CoV-2 infection leads to acute bone loss, increased osteoclast number, and thinner growth plates. This bone loss could decrease whole-bone mechanical strength and increase the risk of fragility fractures, particularly in older patients, while thinner growth plates may create growth disturbances in younger patients. Evaluating skeletal health in patients that have recovered from COVID-19 will be crucial to identify at-risk populations and develop effective countermeasures.


Subject(s)
Bone Diseases, Metabolic , COVID-19 , Animals , Mice , COVID-19/complications , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
7.
PLoS Negl Trop Dis ; 16(7): e0010566, 2022 07.
Article in English | MEDLINE | ID: mdl-35788751

ABSTRACT

Zika virus (ZIKV) is unique among mosquito-borne flaviviruses in that it is also vertically and sexually transmitted by humans. The male reproductive tract is thought to be a ZIKV reservoir; however, the reported magnitude and duration of viral persistence in male genital tissues vary widely in humans and non-human primate models. ZIKV tissue and cellular tropism and potential effects on male fertility also remain unclear. The objective of this study was to resolve these questions by analyzing archived genital tissues from 51 ZIKV-inoculated male macaques and correlating data on plasma viral kinetics, tissue tropism, and ZIKV-induced pathological changes in the reproductive tract. We hypothesized that ZIKV would persist in the male macaque genital tract for longer than there was detectable viremia, where it would localize to germ and epithelial cells and associate with lesions. We detected ZIKV RNA and infectious virus in testis, epididymis, seminal vesicle, and prostate gland. In contrast to prepubertal males, sexually mature macaques were significantly more likely to harbor persistent ZIKV RNA or infectious virus somewhere in the genital tract, with detection as late as 60 days post-inoculation. ZIKV RNA localized primarily to testicular stem cells/sperm precursors and epithelial cells, including Sertoli cells, epididymal duct epithelium, and glandular epithelia of the seminal vesicle and prostate gland. ZIKV infection was associated with microscopic evidence of inflammation in the epididymis and prostate gland of sexually mature males, pathologies that were absent in uninfected controls, which could have significant effects on male fertility. The findings from this study increase our understanding of persistent ZIKV infection which can inform risk of sexual transmission during assisted reproductive therapies as well as potential impacts on male fertility.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Genitalia, Male , Humans , Macaca , Male , RNA , Semen , Zika Virus/genetics
8.
PLoS Pathog ; 18(2): e1009914, 2022 02.
Article in English | MEDLINE | ID: mdl-35143587

ABSTRACT

As novel SARS-CoV-2 variants continue to emerge, it is critical that their potential to cause severe disease and evade vaccine-induced immunity is rapidly assessed in humans and studied in animal models. In early January 2021, a novel SARS-CoV-2 variant designated B.1.429 comprising 2 lineages, B.1.427 and B.1.429, was originally detected in California (CA) and it was shown to have enhanced infectivity in vitro and decreased antibody neutralization by plasma from convalescent patients and vaccine recipients. Here we examine the virulence, transmissibility, and susceptibility to pre-existing immunity for B 1.427 and B 1.429 in the Syrian hamster model. We find that both variants exhibit enhanced virulence as measured by increased body weight loss compared to hamsters infected with ancestral B.1 (614G), with B.1.429 causing the most marked body weight loss among the 3 variants. Faster dissemination from airways to parenchyma and more severe lung pathology at both early and late stages were also observed with B.1.429 infections relative to B.1. (614G) and B.1.427 infections. In addition, subgenomic viral RNA (sgRNA) levels were highest in oral swabs of hamsters infected with B.1.429, however sgRNA levels in lungs were similar in all three variants. This demonstrates that B.1.429 replicates to higher levels than ancestral B.1 (614G) or B.1.427 in the oropharynx but not in the lungs. In multi-virus in-vivo competition experiments, we found that B.1. (614G), epsilon (B.1.427/B.1.429) and gamma (P.1) dramatically outcompete alpha (B.1.1.7), beta (B.1.351) and zeta (P.2) in the lungs. In the nasal cavity, B.1. (614G), gamma, and epsilon dominate, but the highly infectious alpha variant also maintains a moderate size niche. We did not observe significant differences in airborne transmission efficiency among the B.1.427, B.1.429 and ancestral B.1 (614G) and WA-1 variants in hamsters. These results demonstrate enhanced virulence and high relative oropharyngeal replication of the epsilon (B.1.427/B.1.429) variant in Syrian hamsters compared to an ancestral B.1 (614G) variant.


Subject(s)
COVID-19/virology , SARS-CoV-2/pathogenicity , Animals , COVID-19/pathology , Disease Models, Animal , Female , Humans , Lung/pathology , Lung/virology , Male , Mesocricetus , Mutation , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virulence
9.
bioRxiv ; 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34462750

ABSTRACT

As novel SARS-CoV-2 variants continue to emerge, it is critical that their potential to cause severe disease and evade vaccine-induced immunity is rapidly assessed in humans and studied in animal models. In early January 2021, a novel variant of concern (VOC) designated B.1.429 comprising 2 lineages, B.1.427 and B.1.429, was originally detected in California (CA) and shown to enhance infectivity in vitro and decrease antibody neutralization by plasma from convalescent patients and vaccine recipients. Here we examine the virulence, transmissibility, and susceptibility to pre-existing immunity for B 1.427 and B 1.429 in the Syrian hamster model. We find that both strains exhibit enhanced virulence as measured by increased body weight loss compared to hamsters infected with ancestral B.1 (614G), with B.1.429 causing the most body weight loss among all 3 lineages. Faster dissemination from airways to parenchyma and more severe lung pathology at both early and late stages were also observed with B.1.429 infections relative to B.1. (614G) and B.1.427 infections. In addition, subgenomic viral RNA (sgRNA) levels were highest in oral swabs of hamsters infected with B.1.429, however sgRNA levels in lungs were similar in all three strains. This demonstrates that B.1.429 replicates to higher levels than ancestral B.1 (614G) or B.1.427 in the upper respiratory tract (URT) but not in the lungs. In multi-virus in-vivo competition experiments, we found that epsilon (B.1.427/B.1.429) and gamma (P.1) dramatically outcompete alpha (B.1.1.7), beta (B.1.351) and zeta (P.2) in the lungs. In the URT gamma, and epsilon dominate, but the highly infectious alpha variant also maintains a moderate size niche. We did not observe significant differences in airborne transmission efficiency among the B.1.427, B.1.429 and ancestral B.1 (614G) variants in hamsters. These results demonstrate enhanced virulence and high relative fitness of the epsilon (B.1.427/B.1.429) variant in Syrian hamsters compared to an ancestral B.1 (614G) strain. AUTHOR SUMMARY: In the last 12 months new variants of SARS-CoV-2 have arisen in the UK, South Africa, Brazil, India, and California. New SARS-CoV-2 variants will continue to emerge for the foreseeable future in the human population and the potential for these new variants to produce severe disease and evade vaccines needs to be understood. In this study, we used the hamster model to determine the epsilon (B.1.427/429) SARS-CoV-2 strains that emerged in California in late 2020 cause more severe disease and infected hamsters have higher viral loads in the upper respiratory tract compared to the prior B.1 (614G) strain. These findings are consistent with human clinical data and help explain the emergence and rapid spread of this strain in early 2021.

10.
J Virol ; 95(16): e0040321, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34037419

ABSTRACT

To understand susceptibility of wild California sea lions and Northern elephant seals to influenza A virus (IAV), we developed an ex vivo respiratory explant model and used it to compare infection kinetics for multiple IAV subtypes. We first established the approach using explants from colonized rhesus macaques, a model for human IAV. Trachea, bronchi, and lungs from 11 California sea lions, 2 Northern elephant seals, and 10 rhesus macaques were inoculated within 24 h postmortem with 6 strains representing 4 IAV subtypes. Explants from the 3 species showed similar IAV infection kinetics, with peak viral titers 48 to 72 h post-inoculation that increased by 2 to 4 log10 PFU/explant relative to the inoculum. Immunohistochemistry localized IAV infection to apical epithelial cells. These results demonstrate that respiratory tissue explants from wild marine mammals support IAV infection. In the absence of the ability to perform experimental infections of marine mammals, this ex vivo culture of respiratory tissues mirrors the in vivo environment and serves as a tool to study IAV susceptibility, host range, and tissue tropism. IMPORTANCE Although influenza A virus can infect marine mammals, a dearth of marine mammal cell lines and ethical and logistical challenges prohibiting experimental infections of living marine mammals mean that little is known about IAV infection kinetics in these species. We circumvented these limitations by adapting a respiratory tract explant model first to establish the approach with rhesus macaques and then for use with explants from wild marine mammals euthanized for nonrespiratory medical conditions. We observed that multiple strains representing 4 IAV subtypes infected trachea, bronchi, and lungs of macaques and marine mammals with variable peak titers and kinetics. This ex vivo model can define infection dynamics for IAV in marine mammals. Further, use of explants from animals euthanized for other reasons reduces use of animals in research.


Subject(s)
Influenza A virus/physiology , Orthomyxoviridae Infections/virology , Respiratory Tract Infections/virology , Animals , Dogs , Host Specificity , Influenza A virus/classification , Kinetics , Macaca mulatta , Madin Darby Canine Kidney Cells , Models, Biological , Respiratory System/pathology , Respiratory System/virology , Sea Lions , Seals, Earless , Species Specificity , Viral Load , Viral Tropism
11.
BMC Psychiatry ; 21(1): 30, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33430829

ABSTRACT

BACKGROUND: Psychotic experiences (PEs) are not uncommon in young people and are associated with both psychopathology and compromised global functioning. Although psychotic experiences are transient (short-lived, self-resolving and non-recurring) for most people who report them, few studies have examined the association between early transient PEs and later functioning in population samples. Additionally, studies using self-report measures of interpersonal and educational/ vocational difficulties are lacking. The aim of this study was to examine the relationship between transient psychotic experiences and self-reported interpersonal and educational/vocational difficulties in adolescence and young adulthood. METHODS: Participants were 103 young people from a longitudinal population-based study cohort of mental health in Ireland. They attended for baseline clinical interviews in childhood (age 11-13) and were followed up in young adulthood (age 19-25). Participants who reported psychotic experiences at baseline but not at follow-up were classified as having transient psychotic experiences. Data from both time-points were used to examine the association between transient psychotic experiences and self-reported interpersonal and educational/ vocational difficulties in young adulthood using poisson regression modelling. RESULTS: Young people with a history of transient psychotic experiences reported significantly higher interpersonal (adj IRR: 1.83, 95%ileCI: 1.10-3.02, p = .02) and educational/vocational (adj IRR: 2.28, 95%ileCI: 1.43-3.64, p = .001) difficulties during adolescence. However, no significant differences in interpersonal (adj IRR: 0.49, 95%ileCI: 0.10-2.30, p = .37) or educational/vocational (adj IRR: 0.88, 95%ileCI: 0.37-2.08, p = .77) difficulties were found in young adulthood. Self-reported interpersonal and educational/vocational difficulties in young people both with and without a history of transient psychotic experiences decreased between adolescence and young adulthood. CONCLUSIONS: Young people with transient psychotic experiences have increased interpersonal and educational/vocational difficulties in adolescence but these may not persist into the young adult years. This finding indicates that early psychotic experiences may not confer high risk for long-term interpersonal or educational/vocational deficits among young people who experience these phenomena transiently.


Subject(s)
Psychotic Disorders , Adolescent , Adult , Child , Humans , Ireland/epidemiology , Longitudinal Studies , Mental Health , Psychopathology , Psychotic Disorders/epidemiology , Self Report , Young Adult
12.
JCI Insight ; 5(24)2020 12 17.
Article in English | MEDLINE | ID: mdl-33180748

ABSTRACT

Congenital Zika syndrome (CZS) is associated with microcephaly and various neurological, musculoskeletal, and ocular abnormalities, but the long-term pathogenesis and postnatal progression of ocular defects in infants are not well characterized. Rhesus macaques are superior to rodents as models of CZS because they are natural hosts of the virus and share similar immune and ocular characteristics, including blood-retinal barrier characteristics and the unique presence of a macula. Using a previously described model of CZS, we infected pregnant rhesus macaques with Zika virus (ZIKV) during the late first trimester and characterized postnatal ocular development and evolution of ocular defects in 2 infant macaques over 2 years. We found that one of them exhibited colobomatous chorioretinal atrophic lesions with macular and vascular dragging as well as retinal thinning caused by loss of retinal ganglion neuron and photoreceptor layers. Despite these congenital ocular malformations, axial elongation and retinal development in these infants progressed at normal rates compared with healthy animals. The ZIKV-exposed infants displayed a rapid loss of ZIKV-specific antibodies, suggesting the absence of viral replication after birth, and did not show any behavioral or neurological defects postnatally. Our findings suggest that ZIKV infection during early pregnancy can impact fetal retinal development and cause congenital ocular anomalies but does not appear to affect postnatal ocular growth.


Subject(s)
Prenatal Exposure Delayed Effects/virology , Retina/embryology , Zika Virus Infection/metabolism , Animals , Blood-Retinal Barrier/virology , Female , Macaca/virology , Macaca mulatta , Pregnancy , Pregnancy Complications, Infectious/virology , Retina/virology , Retinal Degeneration/virology , Retinal Ganglion Cells/physiology , Retinal Ganglion Cells/virology , Virus Replication , Zika Virus/immunology , Zika Virus/pathogenicity , Zika Virus Infection/complications , Zika Virus Infection/physiopathology
13.
NPJ Vaccines ; 5: 97, 2020.
Article in English | MEDLINE | ID: mdl-33083032

ABSTRACT

Chikungunya virus (CHIKV), which causes a febrile illness characterized by severe and prolonged polyarthralgia/polyarthritis, is responsible for a global disease burden of millions of cases each year with autochthonous transmission in over 100 countries and territories worldwide. There is currently no approved treatment or vaccine for CHIKV. One live-attenuated vaccine (LAV) developed by the United States Army progressed to Phase II human clinical trials but was withdrawn when 8% of volunteers developed joint pain associated with vaccination. Attenuation of the Army's CHIKV LAV strain 181 clone 25 (CHIKV-181/25) relies on two mutations in the envelope 2 (E2) glycoprotein responsible for cell binding and entry, making it particularly prone to reversion, a common concern for replication-competent vaccines. High error rates associated with RNA virus replication have posed a challenge for LAV development where stable incorporation of attenuating elements is necessary for establishing safety in pre-clinical models. Herein, we incorporate two replicase mutations into CHIKV-181/25 which modulate CHIKV replication fidelity combined with additional attenuating features that cannot be eliminated by point mutation. The mutations were stably incorporated in the LAV and did not increase virulence in mice. Two fidelity-variant CHIKV LAVs generated neutralizing antibodies and were protective from CHIKV disease in adult mice. Unexpectedly, our fidelity-variant candidates were more mutable than CHIKV-181/25 and exhibited restricted replication in mice and Aedes mosquitoes, a possible consequence of hypermutation. Our data demonstrate safety and efficacy but highlight a further need to evaluate fidelity-altering phenotypes before use as a LAV given the potential for virulent reversion.

15.
Sci Transl Med ; 11(523)2019 12 18.
Article in English | MEDLINE | ID: mdl-31852797

ABSTRACT

Zika virus (ZIKV) infection of pregnant women is associated with congenital Zika syndrome (CZS) and no vaccine is available, although several are being tested in clinical trials. We tested the efficacy of ZIKV DNA vaccine VRC5283 in a rhesus macaque model of congenital ZIKV infection. Most animal vaccine experiments have a set pathogen exposure several weeks or months after vaccination. In the real world, people encounter pathogens years or decades after vaccination, or may be repeatedly exposed if the virus is endemic. To more accurately mimic how this vaccine would be used, we immunized macaques before conception and then exposed them repeatedly to ZIKV during early and mid-gestation. In comparison to unimmunized animals, vaccinated animals had a significant reduction in peak magnitude and duration of maternal viremia, early fetal loss, fetal infection, and placental and fetal brain pathology. Vaccine-induced neutralizing antibody titers on the day of first ZIKV exposure were negatively associated with the magnitude of maternal viremia, and the absence of prolonged viremia was associated with better fetal outcomes. These data support further clinical development of ZIKV vaccine strategies to protect against negative fetal outcomes.


Subject(s)
Vaccination/methods , Vaccines, DNA/therapeutic use , Zika Virus Infection/prevention & control , Animals , Antibodies, Neutralizing/metabolism , Female , Macaca mulatta , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/prevention & control , Viremia/immunology , Viremia/prevention & control , Zika Virus/immunology , Zika Virus/pathogenicity
16.
J Man Manip Ther ; 27(3): 162-171, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30935326

ABSTRACT

Objectives: Prudent dry needling techniques are commonly practiced with the intent to avoid large neurovascular structures, thereby minimizing potential excessive bleeding and neural injury. Patient position is one factor thought to affect the size of the safe zone during dry needling of some muscles. This study aimed to compare the size of the needle safe zone of the iliacus muscle during two different patient positions using ultrasound imaging. Methods: The distance from the anterior inferior iliac spine (AIIS) to the posterior pole of the femoral nerve was measured in 25 healthy participants (11 male, 14 female, mean age = 40) in both supine and sidelying positions using a Chison Eco1 musculoskeletal ultrasound unit. The average distance was calculated for each position and a two-tailed, paired t-test (α < 0.05) was used to examine the difference between positions. Results: The mean distance from the AIIS to the posterior pole of the femoral nerve was statistically greater with participants in the sidelying position (mean[SD] = 35.7 [6.2] mm) than in the supine position (mean[SD] = 32.1 [7.3] mm, p < .001). Discussion: Although more study is needed, these results suggest that patient positioning is one of several potential variables that should be considered in the optimization of patient safety/relative risk when performing trigger point dry needling. Level of Evidence: Level 4 (Pre-Post Test).


Subject(s)
Dry Needling , Femoral Nerve , Muscle, Skeletal , Patient Positioning/methods , Trigger Points , Adult , Dry Needling/adverse effects , Dry Needling/methods , Female , Femoral Nerve/diagnostic imaging , Femoral Nerve/physiology , Hip/diagnostic imaging , Hip/physiology , Humans , Male , Middle Aged , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Risk , Trigger Points/diagnostic imaging , Trigger Points/physiology , Young Adult
17.
J Med Primatol ; 45(6): 336-341, 2016 12.
Article in English | MEDLINE | ID: mdl-27506330

ABSTRACT

BACKGROUND: Crescentic glomeruli are the hallmark finding in rapidly progressive glomerulonephritis (RPGN) and are characterized by disruption and proliferation of the glomerular capsule and an influx of cells into Bowman's space. Pauci-immune-type RPGN is identified by a lack of immunoglobulins and immune complexes in the glomerular basement membrane. METHODS: Complete necropsy and histology were performed on the affected chimpanzee. Electron microscopy was performed on kidney sections. A search of the literature was performed to identify spontaneous RPGN in animals. RESULTS: We report a case of crescentic glomerulonephritis of the pauci-immune-type in a hepatitis C virus-infected 28-year-old male chimpanzee (Pan troglodytes) who was humanely euthanized for a cardiac-related decline in health. CONCLUSION: To our knowledge, this is the first report describing pauci-immune crescentic glomerulonephritis in a non-human primate.


Subject(s)
Ape Diseases , Glomerulonephritis/veterinary , Pan troglodytes , Animals , Animals, Domestic , Animals, Zoo , Ape Diseases/diagnosis , Ape Diseases/pathology , Glomerulonephritis/classification , Glomerulonephritis/diagnosis , Glomerulonephritis/pathology , Male
18.
Vet Parasitol ; 210(1-2): 102-5, 2015 May 30.
Article in English | MEDLINE | ID: mdl-25868849

ABSTRACT

Endangered wood bison (Bison bison athabascae) is the largest terrestrial mammal in the American continent. Animal health is an important issue in their conservation, and Sarcocystis cruzi may be a cause of clinical disease in Bovidae. Hearts of eight wood bison from Alaska, USA were examined for sarcocysts by histology, transmission electron microscopy, pepsin digestion, and molecularly. Sarcocystis bradyzoites were found in pepsin digests of all eight and sarcocysts were found in histologic sections of myocardium of four bison. Sarcocysts were thin-walled and ultrastructurally consistent with S. cruzi. Characterization of DNA obtained from lysis of pepsin liberated bradyzoites by PCR-RFLP and subsequent phylogenetic analyses matched with that previously reported for S. cruzi infecting cattle in the USA. Collectively, data indicate that wood bison is a natural intermediate host for S. cruzi.


Subject(s)
Sarcocystis/isolation & purification , Sarcocystosis/veterinary , Alaska/epidemiology , Animals , Bison , Male , Phylogeny , Sarcocystis/genetics , Sarcocystosis/epidemiology
19.
Neurotoxicol Teratol ; 27(6): 825-34, 2005.
Article in English | MEDLINE | ID: mdl-16054801

ABSTRACT

Developmental effects of phytoestrogens were studied in offspring from pregnant rats who received a free-feeding diet of either rat chow that was very low in phytoestrogens (low phyto), rat chow low in phytoestrogens and given a genistein and diadzein supplement tablet (high phyto), or normal rat chow (normal) from the second week of pregnancy to weaning (postnatal day 21). Measurements of anogenital distance, daily weights, righting reflex and ultrasonic vocalizations were made on neonatal pups and plasma testosterone and corticosterone were assessed in adult males. There was a significant effect of phytoestrogen treatment on USV for all male and female offspring. Differences between groups in daily weights and anogenital distance were attributed to the micronutrient levels of the two rat chow types employed in this study. No differences in righting reflex test, corticosterone levels or testosterone levels were found among treatment conditions. These results are the first demonstration of phytoestrogens affecting USVs and underscore the complexity of the effects of these substances on biobehavioral development.


Subject(s)
Phytoestrogens/pharmacology , Animals , Animals, Newborn , Body Weight/drug effects , Corticosterone/blood , Diet , Female , Genistein/pharmacology , Isoflavones/pharmacology , Male , Perineum/growth & development , Rats , Rats, Sprague-Dawley , Reflex/drug effects , Testosterone/blood , Vocalization, Animal/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...