Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Anat Rec (Hoboken) ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38095113

ABSTRACT

As bones age in most mammals, they typically become more fragile. This state of bone fragility is often associated with more homogenous collagen fiber orientations (CFO). Unlike most mammals, bats maintain mechanically competent bone throughout their lifespans, but little is known of positional and age-related changes in CFO within wing bones. This study tests the hypothesis that age-related changes in CFO in big brown bats (Eptesicus fuscus) differ from those of the standard mammalian model for skeletal aging, the C57BL/6 laboratory mouse. We used data from quantitative polarized light microscopy (qPLM) to compare CFO across the lifespan of long-lived big brown bats and age matched C57BL/6 mice. Eptesicus and C57BL/6 mice displayed idiosyncratic patterns of CFO. Consistent age-related changes were only apparent in the outer cortical bone of Eptesicus, where bone tissue is more longitudinally arranged and more anisotropic in older individuals. Both taxa displayed a ring of more transversely oriented bone tissue surrounding the medullary cavity. In Eptesicus, this tissue represents a greater proportion of the overall cross-section, and is more clearly helically aligned (arranged at 45° to the bone long axis) than similar bone tissue in mice. Bat wing bones displayed a proximodistal gradient in CFO anisotropy and longitudinal orientation in both outer and inner cortical bone compartments. This study lays a methodological foundation for the quantitative evaluation of bone tissue architecture in volant and non-volant mammals that may be expanded in the future.

2.
Cells ; 12(20)2023 10 18.
Article in English | MEDLINE | ID: mdl-37887326

ABSTRACT

Complex lymphatic anomalies (CLAs) are a set of rare diseases with unique osteopathic profiles. Recent efforts have identified how lymphatic-specific somatic activating mutations can induce abnormal lymphatic formations that are capable of invading bone and inducing bone resorption. The abnormal bone resorption in CLA patients has been linked to overactive osteoclasts in areas with lymphatic invasions. Despite these findings, the mechanism associated with progressive bone loss in CLAs remains to be elucidated. In order to determine the role of osteoblasts in CLAs, we sought to assess osteoblast differentiation and bone formation when exposed to the lymphatic endothelial cell secretome. When treated with lymphatic endothelial cell conditioned medium (L-CM), osteoblasts exhibited a significant decrease in proliferation, differentiation, and function. Additionally, L-CM treatment also inhibited bone formation through a neonatal calvaria explant culture. These findings are the first to reveal how osteoblasts may be actively suppressed during bone lymphatic invasion in CLAs.


Subject(s)
Bone Resorption , Osteogenesis , Infant, Newborn , Humans , Secretome , Osteoblasts , Cell Differentiation , Skull , Endothelial Cells
3.
J Orthop Sports Med ; 4(3): 224-240, 2022.
Article in English | MEDLINE | ID: mdl-36203492

ABSTRACT

The rat animal model is a cost effective and reliable model used in spinal pre-clinical research. Complications from various surgical procedures in humans often arise that were based on these pre-clinical animal models. Therefore safe and efficacious pre-clinical animal models are needed to establish continuity into clinical trials. A Standard Operating Procedure (SOP) is a validated method that allows researchers to safely and carefully replicate previously successful surgical techniques. Thus, the aim of this study is to describe in detail the procedures involved in a common rat bilateral posterolateral intertransverse spinal fusion SOP used to test the efficacy and safety different orthobiologics using a collagen-soaked sponge as an orthobiologic carrier. Only two orthobiologics are currently FDA approved for spinal fusion surgery which include recombinant bone morphogenetic protein 2 (rhBMP-2), and I-FACTOR. While there are many additional orthobiologics currently being tested, one way to show their safety profile and gain FDA approval, is to use well established pre-clinical animal models. A preoperative, intraoperative, and postoperative surgical setup including specific anesthesia and euthanasia protocols are outlined. Furthermore, we describe different postoperative methods used to validate the spinal fusion SOP, which include µCT analysis, histopathology, biomechanical testing, and blood analysis. This SOP can help increase validity, transparency, efficacy, and reproducibly in future rat spinal fusion surgery procedures.

5.
Int J Mol Sci ; 23(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35897834

ABSTRACT

Complex Lymphatic Anomalies (CLA) are lymphatic malformations with idiopathic bone and soft tissue involvement. The extent of the abnormal lymphatic presentation and boney invasion varies between subtypes of CLA. The etiology of these diseases has proven to be extremely elusive due to their rarity and irregular progression. In this review, we compiled literature on each of the four primary CLA subtypes and discuss their clinical presentation, lymphatic invasion, osseous profile, and regulatory pathways associated with abnormal bone loss caused by the lymphatic invasion. We highlight key proliferation and differentiation pathways shared between lymphatics and bone and how these systems may interact with each other to stimulate lymphangiogenesis and cause bone loss.


Subject(s)
Bone Diseases , Lymphatic Abnormalities , Lymphatic Vessels , Bone Diseases/metabolism , Bone and Bones , Humans , Lymphangiogenesis , Lymphatic Vessels/metabolism
6.
Life (Basel) ; 12(4)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35455072

ABSTRACT

The aim of this review is to provide an updated review of the epigenetic factors involved in the onset and development of osteoarthritis (OA). OA is a prevalent degenerative joint disease characterized by chronic inflammation, ectopic bone formation within the joint, and physical and proteolytic cartilage degradation which result in chronic pain and loss of mobility. At present, no disease-modifying therapeutics exist for the prevention or treatment of the disease. Research has identified several OA risk factors including mechanical stressors, physical activity, obesity, traumatic joint injury, genetic predisposition, and age. Recently, there has been increased interest in identifying epigenetic factors involved in the pathogenesis of OA. In this review, we detail several of these epigenetic modifications with known functions in the onset and progression of the disease. We also review current therapeutics targeting aberrant epigenetic regulation as potential options for preventive or therapeutic treatment.

8.
Nat Commun ; 12(1): 1615, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712580

ABSTRACT

Exceptionally long-lived species, including many bats, rarely show overt signs of aging, making it difficult to determine why species differ in lifespan. Here, we use DNA methylation (DNAm) profiles from 712 known-age bats, representing 26 species, to identify epigenetic changes associated with age and longevity. We demonstrate that DNAm accurately predicts chronological age. Across species, longevity is negatively associated with the rate of DNAm change at age-associated sites. Furthermore, analysis of several bat genomes reveals that hypermethylated age- and longevity-associated sites are disproportionately located in promoter regions of key transcription factors (TF) and enriched for histone and chromatin features associated with transcriptional regulation. Predicted TF binding site motifs and enrichment analyses indicate that age-related methylation change is influenced by developmental processes, while longevity-related DNAm change is associated with innate immunity or tumorigenesis genes, suggesting that bat longevity results from augmented immune response and cancer suppression.


Subject(s)
Chiroptera/genetics , DNA Methylation , Longevity/genetics , Aging/genetics , Animals , Carcinogenesis/genetics , Chromatin , Epigenesis, Genetic , Genetic Techniques , Histones , Immunity, Innate/genetics , Phylogeny
9.
Connect Tissue Res ; 62(6): 615-628, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33043724

ABSTRACT

PURPOSE: Transposable elements are known to remodel gene structure and provide a known source of genetic variation. Retrotransposon gag-like-3 (RTL3) is a mammalian retrotransposon-derived transcript (MART) whose function in the skeletal tissue is unknown. This study aimed to elucidate the biological significance of RTL3 in chondrogenesis and type-II collagen (COL2A1) gene expression in chondrocytes. MATERIALS AND METHODS: Expression of RTL3, SOX-9 and COL2A1 mRNAs was determined by TaqMan assays and the protein expression by immunoblotting. RTL3 and Sox-9 depletion in human chondrocytes was achieved using validated siRNAs. An RTL3 mutant (∆RTL3) lacking the zinc finger domain was created using in vitro mutagenesis. Forced expression of RTL3, ∆RTL3, and SOX-9 was achieved using CMV promoter containing expression plasmids. CRISPR-Cas9 was utilized to delete Rtl3 and create a stable ATDC5Rlt3-/- cell line. Matrix deposition and Col2a1 quantification during chondrogenesis were determined by Alcian blue staining and Sircol™ Soluble Collagen Assay, respectively. RESULTS: RTL3 is not ubiquitously expressed but showed strong expression in cartilage, chondrocytes and synoviocytes but not in muscle, brain, or other tissues analyzed. Loss-of-function and gain-of-function studies demonstrated a critical role of RTL3 in the regulation of SOX-9 and COL2A1 expression and matrix synthesis during chondrogenesis. Both RTL3 and SOX-9 displayed co-regulated expression in chondrocytes. Gene regulatory activity of RTL3 requires the c-terminal CCHC zinc-finger binding domain. CONCLUSIONS: Our results identify a novel regulatory mechanism of COL2A1 expression in chondrocytes that may help to further understand the skeletal development and the pathogenesis of diseases with altered COL2A1 expression.


Subject(s)
Chondrocytes , Retroelements , Animals , Cell Differentiation , Chondrocytes/metabolism , Chondrogenesis/genetics , Collagen/metabolism , Collagen Type II/genetics , Collagen Type II/metabolism , Humans , Mammals/genetics , Mammals/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism
10.
J Exp Zool B Mol Dev Evol ; 334(6): 339-349, 2020 09.
Article in English | MEDLINE | ID: mdl-32729176

ABSTRACT

Bowhead whales are among the longest-lived mammals with an extreme lifespan of about 211 years. During the first 25 years of their lives, rib bones increase in mineral density and the medulla transitions from compact to trabecular bone. Molecular drivers associated with these phenotypic changes in bone remain unknown. This study assessed expression levels of osteogenic genes from samples of rib bones of bowheads. Samples were harvested from prenatal to 86-year-old whales, representing the first third of the bowhead lifespan. Fetal to 2-year-old bowheads showed expression levels consistent with the rapid deposition of the bone extracellular matrix. Sexually mature animals showed expression levels associated with low rates of osteogenesis and increased osteoclastogenesis. After the first 25 years of life, declines in osteogenesis corresponded with increased expression of EZH2, an epigenetic regulator of osteogenesis. These findings suggest EZH2 may be at least one epigenetic modifier that contributes to the age-related changes in the rib bone phenotype along with the transition from compact to trabecular bone. Ancient cetaceans and their fossil relatives also display these phenotypes, suggesting EZH2 may have shaped the skeleton of whales in evolutionary history.


Subject(s)
Gene Expression Regulation, Developmental/physiology , Osteosclerosis/veterinary , Ribs/physiology , Whales/growth & development , Whales/genetics , Aging , Animals , Epigenesis, Genetic , Osteosclerosis/genetics , Osteosclerosis/pathology , Ribs/metabolism
11.
PLoS One ; 13(5): e0196154, 2018.
Article in English | MEDLINE | ID: mdl-29715267

ABSTRACT

Vespertilionid bats (Mammalia: Order Chiroptera) live 3-10 times longer than other mammals of an equivalent body size. At present, nothing is known of how bat fecal metabolic profiles shift with age in any taxa. This study established the feasibility of using a non-invasive, fecal metabolomics approach to examine age-related differences in the fecal metabolome of young and elderly adult big brown bats (Eptesicus fuscus) as an initial investigation into using metabolomics for age determination. Samples were collected from captive, known-aged big brown bats (Eptesicus fuscus) from 1 to over 14 years of age: these two ages represent age groups separated by approximately 75% of the known natural lifespan of this taxon. Results showed 41 metabolites differentiated young (n = 22) and elderly (n = 6) Eptesicus. Significant differences in metabolites between young and elderly bats were associated with tryptophan metabolism and incomplete protein digestion. Results support further exploration of the physiological mechanisms bats employ to achieve exceptional longevity.


Subject(s)
Chiroptera/physiology , Feces/chemistry , Longevity/physiology , Metabolomics , Animals
12.
Neurobiol Aging ; 67: 148-158, 2018 07.
Article in English | MEDLINE | ID: mdl-29660685

ABSTRACT

Low bone mineral density (BMD) is a significant comorbidity in Alzheimer's disease (AD) and may reflect systemic regulatory pathway dysfunction. Low BMD has been identified in several AD mouse models selective for amyloid-ß or tau pathology, but these deficits were attributed to diverse mechanisms. In this study, we identified common pathophysiological mechanisms accounting for bone loss and neurodegeneration in the htau mouse, a tauopathy model with an early low BMD phenotype. We investigated the Wnt/ß-catenin pathway-a cellular signaling cascade linked to both bone loss and neuropathology. We showed that low BMD persisted in male htau mice aged from 6 to 14 months, remaining significantly lower than tau-null and C57BL/6J controls. Osteogenic gene expression in female and male htau mice was markedly reduced from controls, indicating impaired bone remodeling. In both the bone and brain, htau mice showed alterations in Wnt/ß-catenin signaling genes suggestive of increased inhibition of this pathway. These findings implicate dysfunctional Wnt signaling as a potential target for addressing bone loss in AD.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Bone and Bones/metabolism , Brain/metabolism , Tauopathies/metabolism , Wnt Signaling Pathway , tau Proteins/metabolism , Animals , Bone Density , Bone Remodeling/genetics , Disease Models, Animal , Female , Gene Expression , Male , Mice , Osteogenesis/genetics , Osteoporosis/etiology , Osteoporosis/genetics , Tauopathies/genetics , Wnt Proteins/metabolism , beta Catenin/metabolism
13.
Anat Rec (Hoboken) ; 298(8): 1416-23, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25711480

ABSTRACT

Cetacean evolution was shaped by an extraordinary land-to-sea transition in which the ancestors of whales became fully aquatic. As part of this transition, these mammals evolved unusually thick blubber which acts as a metabolic reservoir as well as an insulator and provides buoyancy and streamlining. This study describes blubber stratification and correlates it to seasonal variation, feeding patterns, and ontogeny in an arctic-adapted mysticete, the bowhead whale (Balaena mysticetus). Bowheads are unique among mammals for possessing the largest known blubber stores. We found that adipocyte numbers in bowheads, like other mammals, do not vary with season or feeding pattern but that adipocyte size and structural fiber densities do vary with blubber depth.


Subject(s)
Adipocytes/cytology , Biological Evolution , Bowhead Whale/anatomy & histology , Seasons , Subcutaneous Fat/cytology , Adaptation, Physiological , Age Factors , Animals , Autopsy , Bowhead Whale/psychology , Cell Size , Feeding Behavior , Female , Male
14.
PLoS One ; 9(3): e92751, 2014.
Article in English | MEDLINE | ID: mdl-24663438

ABSTRACT

Leptin is a pleiotropic protein best known for regulation of appetite and fat storage in mammals. While many leptin orthologs have been identified among vertebrates, an authentic leptin in birds has remained elusive and controversial. Here we identify leptin sequence from the Peregrine falcon, Falco peregrinus (pfleptin), and identify sequences from two other birds (mallard and zebra finch), and 'missing' vertebrates (elephant shark, alligator, Indian python, Chinese soft-shelled turtle, and coelacanth). The pattern of genes surrounding leptin (snd1, rbm28) is syntenic between the falcon and mammalian genomes. Phylogenetic analysis of all known leptin protein sequences improves our understanding of leptin's evolution. Structural modeling of leptin orthologs highlights a highly conserved hydrophobic core in the four-helix cytokine packing domain. A docked model of leptin with the leptin receptor for Peregrine falcon reveals several conserved amino acids important for the interaction and possible coevolution of leptin with its receptor. We also show for the first time, an authentic avian leptin sequence that activates the JAK-STAT signaling pathway. These newly identified sequences, structures, and tools for avian leptin and its receptor will allow elucidation of the function of these proteins in feral and domestic birds.


Subject(s)
Birds/genetics , Evolution, Molecular , Leptin , Models, Molecular , Phylogeny , Receptors, Leptin , Animals , Leptin/chemistry , Leptin/genetics , Receptors, Leptin/chemistry , Receptors, Leptin/genetics , Reptiles/genetics , Sequence Analysis, Protein
15.
PLoS One ; 8(1): e54277, 2013.
Article in English | MEDLINE | ID: mdl-23342116

ABSTRACT

Leptin is the primary hormone in mammals that regulates adipose stores. Arctic adapted cetaceans maintain enormous adipose depots, suggesting possible modifications of leptin or receptor function. Determining expression of these genes is the first step to understanding the extreme physiology of these animals, and the uniqueness of these animals presents special challenges in estimating and comparing expression levels of mRNA transcripts. Here, we compare expression of two model genes, leptin and leptin-receptor gene-related product (OB-RGRP), using two quantitative real-time PCR (qPCR) methods: "relative" and "absolute". To assess the expression of leptin and OB-RGRP in cetacean tissues, we first examined how relative expression of those genes might differ when normalized to four common endogenous control genes. We performed relative expression qPCR assays measuring the amplification of these two model target genes relative to amplification of 18S ribosomal RNA (18S), ubiquitously expressed transcript (Uxt), ribosomal protein 9 (Rs9) and ribosomal protein 15 (Rs15) endogenous controls. Results demonstrated significant differences in the expression of both genes when different control genes were employed; emphasizing a limitation of relative qPCR assays, especially in studies where differences in physiology and/or a lack of knowledge regarding levels and patterns of expression of common control genes may possibly affect data interpretation. To validate the absolute quantitative qPCR methods, we evaluated the effects of plasmid structure, the purity of the plasmid standard preparation and the influence of type of qPCR "background" material on qPCR amplification efficiencies and copy number determination of both model genes, in multiple tissues from one male bowhead whale. Results indicate that linear plasmids are more reliable than circular plasmid standards, no significant differences in copy number estimation based upon background material used, and that the use of ethanol precipitated, linearized plasmid preparation produce the most reliable results.


Subject(s)
Leptin/genetics , RNA, Messenger/genetics , Whales/metabolism , Animals , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...