Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Obes Metab ; 26(4): 1479-1491, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38229453

ABSTRACT

AIMS: To determine whether a continuous infusion of a glucagon-like peptide receptor (GLP-1R)/glucagon receptor (GCGR) co-agonist, G3215 is safe and well tolerated in adults with overweight or obesity. METHODS: A phase 1 randomized, double blind, placebo-controlled trial of G3215 in overweight or obese participants, with or without type 2 diabetes. RESULTS: Twenty-six participants were recruited and randomized with 23 completing a 14-day subcutaneous infusion of G3215 or placebo. The most common adverse events were nausea or vomiting, which were mild in most cases and mitigated by real-time adjustment of drug infusion. There were no cardiovascular concerns with G3215 infusion. The pharmacokinetic characteristics were in keeping with a continuous infusion over 14 days. A least-squares mean body weight loss of 2.39 kg was achieved with a 14-day infusion of G3215, compared with 0.84 kg with placebo infusion (p < .05). A reduction in food consumption was also observed in participants receiving G3215 and there was no deterioration in glycaemia. An improved lipid profile was seen in G3215-treated participants and consistent with GCGR activation, a broad reduction in circulating amino acids was seen during the infusion period. CONCLUSION: An adaptive continuous infusion of the GLP-1/GCGR co-agonist, G3215, is safe and well tolerated offering a unique strategy to control drug exposure. By allowing rapid, response-directed titration, this strategy may allow for mitigation of adverse effects and afford significant weight loss within shorter time horizons than is presently possible with weekly GLP-1R and multi-agonists. These results support ongoing development of G3215 for the treatment of obesity and metabolic disease.


Subject(s)
Diabetes Mellitus, Type 2 , Overweight , Adult , Humans , Overweight/complications , Overweight/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Receptors, Glucagon , Obesity/complications , Obesity/drug therapy , Glucagon-Like Peptide 1/therapeutic use , Glucagon-Like Peptide-1 Receptor/therapeutic use
2.
Diabetes Obes Metab ; 23(7): 1471-1483, 2021 07.
Article in English | MEDLINE | ID: mdl-33606914

ABSTRACT

AIM: To report the results from a Phase 1 trial of an extended-release peptide YY analogue, Y14, developed for the treatment of obesity. METHODS: Y14 was evaluated in overweight/obese volunteers in a Phase 1 randomized placebo-controlled trial, conducted in a clinical trial unit in the United Kingdom. Part A was a blinded single-ascending-dose study evaluating doses up to 36 mg. Part B was double-blinded and tested multiple ascending doses between 9 and 36 mg, given at 7- to 14-day intervals, over the course of 28 days, with up to five doses given per participant. The primary outcome was safety and tolerability; the secondary outcome was assessment of pharmacokinetic (PK) characteristics. Exploratory outcomes included food intake, body weight change and glucose tolerance after multiple doses. RESULTS: Between April 11, 2017 and December 24, 2018, 53 participants were enrolled into Part A and 24 into Part B of the trial. The PK characteristics were compatible with administration every 7 to 14 days. The most common adverse events (AEs) were nausea, vomiting or administration site reactions, which were mild in most cases and settled with time. No serious AE occurred. Participants given multiple doses of Y14 lost between -2.87 and -3.58 kg body weight compared with placebo (P <0.0001) at 31 days from the first dose, with profound reductions in food intake of 38% to 55% (P <0.0001, compared to placebo) and there was no evidence of tachyphylaxis. CONCLUSIONS: Our results support the continued development of Y14 as a novel treatment for obesity.


Subject(s)
Obesity , Peptide YY , Double-Blind Method , Humans , Obesity/drug therapy , Overweight , United Kingdom
3.
Br J Pharmacol ; 171(10): 2631-44, 2014 May.
Article in English | MEDLINE | ID: mdl-23848361

ABSTRACT

BACKGROUND AND PURPOSE: Transient receptor potential vanilloid subtype 3 (TRPV3) is implicated in nociception and certain skin conditions. As such, it is an attractive target for pharmaceutical research. Understanding of endogenous TRPV3 function and pharmacology remains elusive as selective compounds and native preparations utilizing higher throughput methodologies are lacking. In this study, we developed medium-throughput recombinant and native cellular assays to assess the detailed pharmacological profile of human, rat and mouse TRPV3 channels. EXPERIMENTAL APPROACH: Medium-throughput cellular assays were developed using a Ca(2+) -sensitive dye and a fluorescent imaging plate reader. Human and rat TRPV3 pharmacology was examined in recombinant cell lines, while the mouse 308 keratinocyte cell line was used to assess endogenous TRPV3 activity. KEY RESULTS: A recombinant rat TRPV3 cellular assay was successfully developed after solving a discrepancy in the published rat TRPV3 protein sequence. A medium-throughput, native, mouse TRPV3 keratinocyte assay was also developed and confirmed using genetic approaches. Whereas the recombinant human and rat TRPV3 assays exhibited similar agonist and antagonist profiles, the native mouse assay showed important differences, namely, TRPV3 activity was detected only in the presence of potentiator or during agonist synergy. Furthermore, the native assay was more sensitive to block by some antagonists. CONCLUSIONS AND IMPLICATIONS: Our findings demonstrate similarities but also notable differences in TRPV3 pharmacology between recombinant and native systems. These findings offer insights into TRPV3 function and these assays should aid further research towards developing TRPV3 therapies.


Subject(s)
Membrane Transport Modulators/pharmacology , TRPV Cation Channels/drug effects , Animals , Calcium Signaling/drug effects , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Ligands , Mice , Rats , Recombinant Proteins/drug effects , Recombinant Proteins/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...