Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Endocr Rev ; 37(5): 450-466, 2016 10.
Article in English | MEDLINE | ID: mdl-27712099

ABSTRACT

Most physiological processes in the brain and body exhibit daily (circadian) rhythms coordinated by an endogenous master clock located in the suprachiasmatic nucleus of the hypothalamus that are essential for normal health and functioning. Exposure to sunlight during the day and darkness at night optimally entrains biological rhythms to promote homeostasis and human health. Unfortunately, a major consequence of the modern lifestyle is increased exposure to sun-free environments during the day and artificial lighting at night. Additionally, behavioral disruptions to circadian rhythms (ie, repeated transmeridian flights, night or rotating shift work, or sleep disturbances) have a profound influence on health and have been linked to a number of pathological conditions, including endocrine-dependent cancers. Specifically, night shift work has been identified as a significant risk factor for breast cancer in industrialized countries. Several mechanisms have been proposed by which shift work-induced circadian disruptions promote cancer. In this review, we examine the importance of the brain-body link through which circadian disruptions contribute to endocrine-dependent diseases, including breast carcinogenesis, by negatively impacting neuroendocrine and neuroimmune cells, and we consider preventive measures directed at maximizing circadian health.


Subject(s)
Breast Neoplasms/etiology , Carcinogenesis , Chronobiology Disorders/complications , Circadian Rhythm/physiology , Neurosecretory Systems/physiology , Animals , Chronobiology Disorders/physiopathology , Female , Humans , Lighting , Risk Factors
2.
Mol Cell Endocrinol ; 299(2): 204-11, 2009 Feb 27.
Article in English | MEDLINE | ID: mdl-19059307

ABSTRACT

Selective estrogen receptor modulators (SERMs), such as tamoxifen and raloxifene can act as estrogen receptor (ER) antagonists or agonists depending on the cell type. The antagonistic action of tamoxifen has been invaluable for treating breast cancer, whereas the agonist activity of SERMs also has important clinical applications as demonstrated by the use of raloxifene for osteoporosis. Whereas the mechanism whereby SERMs function as antagonists has been studied extensively very little is known about how SERMs produce agonist effects in different tissues with the two ER types; ERalpha and ERbeta. We examined the regulation of 32 SERM-responsive regions with ERalpha and ERbeta in transiently transfected MCF-7 breast, Ishikawa endometrial, HeLa cervical and WAR-5 prostate cancer cells. The regions were regulated by tamoxifen and raloxifene in some cell types, but not in all cell lines. Tamoxifen activated similar number of regions with ERalpha and ERbeta in the cell lines, whereas raloxifene activated over twice as many regions with ERbeta compared to ERalpha. In Ishikawa endometrial cancer cells, tamoxifen activated 17 regions with ERalpha, whereas raloxifene activated only 2 regions, which might explain their different effects on the endometrium. Microarray studies also found that raloxifene regulated fewer genes than tamoxifen in U2OS bone cancer cells expressing ERalpha, whereas tamoxifen was equally effective at regulating genes with ERalpha and ERbeta. Our studies indicate that tamoxifen is a non-selective agonist, whereas raloxifene is a relative ERbeta-selective agonist, and suggest that ERbeta-selective SERMs might be safer for treating clinical conditions that are dependent on the agonist property of SERMs.


Subject(s)
Gene Expression Regulation/drug effects , Organ Specificity/drug effects , Receptors, Estrogen/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Selective Estrogen Receptor Modulators/pharmacology , Cell Line, Tumor , Estradiol/pharmacology , Estrogen Receptor alpha/metabolism , Humans , Raloxifene Hydrochloride/pharmacology , Tamoxifen/pharmacology
3.
Mol Endocrinol ; 22(2): 287-303, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17962382

ABSTRACT

Estrogen receptors (ERs) regulate gene transcription by interacting with regulatory elements. Most information regarding how ER activates genes has come from studies using a small set of target genes or simple consensus sequences such as estrogen response element, activator protein 1, and Sp1 elements. However, these elements cannot explain the differences in gene regulation patterns and clinical effects observed with estradiol (E(2)) and selective estrogen receptor modulators. To obtain a greater understanding of how E(2) and selective estrogen receptor modulators differentially regulate genes, it is necessary to investigate their action on a more comprehensive set of native regulatory elements derived from ER target genes. Here we used chromatin immunoprecipitation-cloning and sequencing to isolate 173 regulatory elements associated with ERalpha. Most elements were found in the introns (38%) and regions greater than 10 kb upstream of the transcription initiation site (38%); 24% of the elements were found in the proximal promoter region (<10 kb). Only 11% of the elements contained a classical estrogen response element; 23% of the elements did not have any known response elements, including one derived from the naked cuticle homolog gene, which was associated with the recruitment of p160 coactivators. Transfection studies found that 80% of the 173 elements were regulated by E(2), raloxifene, or tamoxifen with ERalpha or ERbeta. Tamoxifen was more effective than raloxifene at activating the elements with ERalpha, whereas raloxifene was superior with ERbeta. Our findings demonstrate that E(2), tamoxifen, and raloxifene differentially regulate native ER-regulatory elements isolated by chromatin immunoprecipitation with ERalpha and ERbeta.


Subject(s)
Estradiol/pharmacology , Estrogen Receptor alpha/metabolism , Raloxifene Hydrochloride/pharmacology , Tamoxifen/pharmacology , Binding Sites/genetics , Cell Line, Tumor , Chromatin Immunoprecipitation , Computational Biology , Estrogen Receptor alpha/genetics , Gene Expression Regulation/drug effects , Humans , Introns/genetics , Luciferases/genetics , Luciferases/metabolism , Promoter Regions, Genetic/genetics , Response Elements/genetics , Reverse Transcriptase Polymerase Chain Reaction , Selective Estrogen Receptor Modulators/pharmacology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...