Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolomics ; 20(4): 72, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977623

ABSTRACT

BACKGROUND: The multitude of metabolites generated by physiological processes in the body can serve as valuable biomarkers for many clinical purposes. They can provide a window into relevant metabolic pathways for health and disease, as well as be candidate therapeutic targets. A subset of these metabolites generated in the human body are volatile, known as volatile organic compounds (VOCs), which can be detected in exhaled breath. These can diffuse from their point of origin throughout the body into the bloodstream and exchange into the air in the lungs. For this reason, breath VOC analysis has become a focus of biomedical research hoping to translate new useful biomarkers by taking advantage of the non-invasive nature of breath sampling, as well as the rapid rate of collection over short periods of time that can occur. Despite the promise of breath analysis as an additional platform for metabolomic analysis, no VOC breath biomarkers have successfully been implemented into a clinical setting as of the time of this review. AIM OF REVIEW: This review aims to summarize the progress made to address the major methodological challenges, including standardization, that have historically limited the translation of breath VOC biomarkers into the clinic. We highlight what steps can be taken to improve these issues within new and ongoing breath research to promote the successful development of the VOCs in breath as a robust source of candidate biomarkers. We also highlight key recent papers across select fields, critically reviewing the progress made in the past few years to advance breath research. KEY SCIENTIFIC CONCEPTS OF REVIEW: VOCs are a set of metabolites that can be sampled in exhaled breath to act as advantageous biomarkers in a variety of clinical contexts.


Subject(s)
Biomarkers , Breath Tests , Exhalation , Metabolomics , Volatile Organic Compounds , Humans , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Breath Tests/methods , Biomarkers/metabolism , Biomarkers/analysis , Metabolomics/methods
2.
J Breath Res ; 18(3)2024 04 24.
Article in English | MEDLINE | ID: mdl-38631337

ABSTRACT

The annual Breath Biopsy Conference hosted by Owlstone Medical gathers together the leading experts, early career researchers, and physicians working with breath as a biomarker platform for clinical purposes. The current topics in breath research are discussed and presented, and an overarching topical theme is identified and discussed as part of an expert panel to close the conference. The profiling of normal breath composition and the establishment of standards for analyzing breath compared to background signal were two important topics that were major focuses of this conference, as well as important innovative progress that has been made since last year, including the development of a non-invasive breath test for lung cancer and liver disease. This meeting report offers an overview of the key take-home messages from the various presentations, posters, and discussions from the conference.


Subject(s)
Biomarkers , Breath Tests , Humans , Breath Tests/methods , Biomarkers/analysis , Biopsy , Congresses as Topic , Lung Neoplasms/diagnosis
3.
Epigenetics Chromatin ; 17(1): 8, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528624

ABSTRACT

Chromatin state is thought to impart regulatory function to the underlying DNA sequence. This can be established through histone modifications and chromatin organisation, but exactly how these factors relate to one another to regulate gene expression is unclear. In this study, we have used super-resolution microscopy to image the Y loops of Drosophila melanogaster primary spermatocytes, which are enormous transcriptionally active chromatin fibres, each representing single transcription units that are individually resolvable in the nuclear interior. We previously found that the Y loops consist of regular clusters of nucleosomes, with an estimated median of 54 nucleosomes per cluster with wide variation.In this study, we report that the histone modifications H3K4me3, H3K27me3, and H3K36me3 are also clustered along the Y loops, with H3K4me3 more associated with diffuse chromatin compared to H3K27me3. These histone modifications form domains that can be stretches of Y loop chromatin micrometres long, or can be in short alternating domains. The different histone modifications are associated with different sizes of chromatin clusters and unique morphologies. Strikingly, a single chromatin cluster almost always only contains only one type of the histone modifications that were labelled, suggesting exclusivity, and therefore regulation at the level of individual chromatin clusters. The active mark H3K36me3 is more associated with actively elongating RNA polymerase II than H3K27me3, with polymerase often appearing on what are assumed to be looping regions on the periphery of chromatin clusters.These results provide a foundation for understanding the relationship between chromatin state, chromatin organisation, and transcription regulation - with potential implications for pause-release dynamics, splicing complex organisation and chromatin dynamics during polymerase progression along a gene.


Subject(s)
Histones , Nucleosomes , Animals , Histones/metabolism , Histone Code , Drosophila melanogaster/genetics , Chromatin/genetics
4.
PLoS Genet ; 19(3): e1010654, 2023 03.
Article in English | MEDLINE | ID: mdl-36867662

ABSTRACT

While the biochemistry of gene transcription has been well studied, our understanding of how this process is organised in 3D within the intact nucleus is less well understood. Here we investigate the structure of actively transcribed chromatin and the architecture of its interaction with active RNA polymerase. For this analysis, we have used super-resolution microscopy to image the Drosophila melanogaster Y loops which represent huge, several megabases long, single transcription units. The Y loops provide a particularly amenable model system for transcriptionally active chromatin. We find that, although these transcribed loops are decondensed they are not organised as extended 10nm fibres, but rather they largely consist of chains of nucleosome clusters. The average width of each cluster is around 50nm. We find that foci of active RNA polymerase are generally located off the main fibre axis on the periphery of the nucleosome clusters. Foci of RNA polymerase and nascent transcripts are distributed around the Y loops rather than being clustered in individual transcription factories. However, as the RNA polymerase foci are considerably less prevalent than the nucleosome clusters, the organisation of this active chromatin into chains of nucleosome clusters is unlikely to be determined by the activity of the polymerases transcribing the Y loops. These results provide a foundation for understanding the topological relationship between chromatin and the process of gene transcription.


Subject(s)
Drosophila , Microscopy , Male , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Nucleosomes/genetics , Spermatocytes/metabolism , Transcription, Genetic , Chromatin/genetics , DNA-Directed RNA Polymerases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...