Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 196: 110726, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36898321

ABSTRACT

In the framework of the EMPIR project traceRadon, stable atmospheres with low-level radon activity concentrations have to be produced for calibrating radon detectors designed to measure outdoor air activity concentrations. The traceable calibration of these detectors at very low activity concentrations is of special interest to the radiation protection, climate observation, and atmospheric research communities. Radiation protection networks (such as the EUropean Radiological Data Exchange Platform (EURDEP)) and atmospheric monitoring networks (such as the Integrated Carbon Observation System (ICOS)) need reliable and accurate radon activity concentration measurements for a variety of reasons, including: the identification of Radon Priority Areas (RPA); improving the sensitivity and reliability of radiological emergency early warning systems (Melintescu et al., 2018); for more reliable application of the Radon Tracer Method (RTM) to estimate greenhouse gas (GHG) emissions; for improved global "baseline" monitoring of changing GHG concentrations and quantification of regional pollution transport (Chambers et al., 2016), (Chambers et al., 2018); and for evaluating mixing and transport parameterisations in regional or global chemical transport models (CTMs) (Zhang et al., 2021), (Chambers et al., 2019). To achieve this goal, low activity sources of radium with a variety of characteristics were produced using different methods. Sources ranging from MBq 226Ra down to several Bq 226Ra were developed and characterised during the evolution of production methods, and uncertainties below 2 % (k=1) were achieved through dedicated detection techniques, even for the lowest activity sources. The uncertainty of the lowest activity sources was improved using a new online measurement technique for which the source and detector were combined in the same device. This Integrated Radon Source Detector device, henceforth an IRSD, reaches a counting efficiency approaching 50 % through detection under quasi 2π sr solid-angle. At the time of this study the IRSD was already produced with 226Ra activities between 2 Bq and 440 Bq. To compare the working performance of the developed sources (i.e., to establish a reference atmosphere), study the stability of the sources, and to establish traceability to national standards, an intercomparison exercise was carried out at the PTB facility. Here we present the various source production techniques, the determination of their radium activity, and determination of their radon emanation (including assigned uncertainties). This includes details of the implementation of the intercomparison set-up, and a discussion of the results of the source characterisations.

2.
Inorg Chem ; 60(7): 4497-4507, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33733754

ABSTRACT

We report the results of the experimental and theoretical study of the magnetic anisotropy of single crystals of the Co-doped lithium nitride Li2(Li1-xCox)N with x = 0.005, 0.01, and 0.02. It was shown recently that doping of the Li3N crystalline matrix with 3d transition metal (TM) ions yields superior magnetic properties comparable with the strongly anisotropic single-molecule magnetism of rare-earth complexes. Our combined electron spin resonance (ESR) and THz spectroscopic investigations of Li2(Li1-xCox)N in a very broad frequency range up to 1.7 THz and in magnetic fields up to 16 T enable an accurate determination of the energies of the spin levels of the ground state multiplet Ŝ = 1 of the paramagnetic Co(I) ion. In particular, we find a very large zero field splitting (ZFS) of almost 1 THz (∼4 meV or 33 cm-1) between the ground-state singlet and the first excited doublet state. On the computational side, ab initio many-body quantum chemistry calculations reveal a ZFS gap consistent with the experimental value. Such a large ZFS energy yields a very strong single-ion magnetic anisotropy of easy-plane type resembling that of rare-earth ions. Its microscopic origin is the unusual linear coordination of the Co(I) ions in Li2(Li1-xCox)N with two nitrogen ligands. Our calculations also evidence a strong 3d-4s hybridization of the electronic shells resulting in significant electron spin density at the 59Co nuclei, which may be responsible for the experimentally observed extraordinary large hyperfine structure of the ESR signals. Altogether, our experimental spectroscopic and computational results enable comprehensive insights into the remarkable properties of the Li2[Li1-x(TM)x]N magnets on the microscopic level.

SELECTION OF CITATIONS
SEARCH DETAIL
...