Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 18(10)2018 Oct 16.
Article in English | MEDLINE | ID: mdl-30332799

ABSTRACT

Surface Acoustic Wave (SAW) sensors are small, passive and wireless devices. We present here the latest results obtained in a project aimed at developing a SAW-based implantable pressure sensor, equipped with a well-defined, 30 µm-thick, 4.7 mm-in-diameter, Lithium Niobate (LN) membrane. A novel fabrication process was used to solve the issue of accurate membrane etching in LN. LN/Si wafers were fabricated first, using wafer-bonding techniques. Grinding/polishing operations followed, to reduce the LN thickness to 30 µm. 2.45 GHz SAW Reflective Delay-Lines (R-DL) were then deposited on LN, using a combination of e-beam and optical lithography. The R-DL was designed in such a way as to allow for easy temperature compensation. Eventually, the membranes were etched in Si. A dedicated set-up was implemented, to characterize the sensors versus pressure and temperature. The achieved pressure accuracy is satisfactory (±0.56 mbar). However, discontinuities in the response curve and residual temperature sensitivity were observed. Further experiments, modeling and simulations were used to analyze the observed phenomena. They were shown to arise essentially from the presence of growing thermo-mechanical strain and stress fields, generated in the bimorph-like LN/Si structure, when the temperature changes. In particular, buckling effects explain the discontinuities, observed around 43 °C, in the response curves. Possible solutions are suggested and discussed.

2.
Article in English | MEDLINE | ID: mdl-26642450

ABSTRACT

This paper proposes an analytical approach to model the generation of bulk acoustic waves in an electrostatically excited silicon MEMS structure, as well as its electromechanical response in terms of static and dynamic displacements, electromechanical coupling, and motional current. The analysis pertains to the single-port electrostatic drive of trapped-energy thickness-extensional (TE) modes in thin plates. Both asymmetric single-side and symmetric double-side electrostatic gap configurations are modeled. Green's function is used to describe the characteristic of the static displacement of the driven surface of the structure versus the dc bias voltage, which allows us to determine the electrical response of the resonator. Optical and electrical characterizations have been performed on resonator samples operating at 10.3 MHz on the fundamental of TE mode under single-side electrostatic excitation. The various figures of merit depend on the dc bias voltage. Typical values of 9000 for the Q-factor, and of 10(-5) for the electromechanical coupling factor k(2) have been obtained with [Formula: see text] for [Formula: see text]-thick gaps. Here-considered modes have a typical temperature coefficients of frequency (TCF) close to -30 ppm/(°)C. We conclude that the practical usability of such electrostatically excited bulk acoustic waves (BAW) resonators essentially depends on the efficiency of the compensation of feed-through capacitance.

3.
Article in English | MEDLINE | ID: mdl-25004485

ABSTRACT

Detecting chemical species in gas phase has recently received an increasing interest mainly for security control, trying to implement new systems allowing for extended dynamics and reactivity. In this work, an open-loop interrogation strategy is proposed to use radio-frequency acoustic transducers as micro-balances for that purpose. The resulting system is dedicated to the monitoring of chemical compounds in gaseous or liquid-phase state. A 16 Hz standard deviation is demonstrated at 125 MHz, with a working frequency band in the 60 to 133 MHz range, answering the requirements for using Rayleigh- and Love-wave-based delay lines operating with 40-µm acoustic wavelength transducers. Moreover, this electronic setup was used to interrogate a high-overtone bulk acoustic wave resonator (HBAR) microbalance, a new sensor class allowing for multi-mode interrogation for gravimetric measurement improvement. The noise source still limiting the system performance is due to the analog-to-digital converter of the microcontroller, thus leaving open degrees-of-freedom for improving the obtained results by optimizing the voltage reference and board layout. The operation of the system is illustrated using a calibrated galvanic deposition at the surface of Love-wave delay lines to assess theoretical predictions of their gravimetric sensitivity and to compare them with HBAR-based sensor sensitivity.

4.
Article in English | MEDLINE | ID: mdl-25004525

ABSTRACT

The constant improvement of industrial needs to face modern telecommunication challenges leads to the development of novel transducer principles as alternatives to SAW and BAW solutions. The main technological limits of SAW (short-circuit between electrodes) and BAW (precise thickness control) solutions can be overcome by a new kind of transducer based on periodically poled ferroelectric substrate. The approach proposed in this paper exploits a ridge structure combined with a periodically poled transducer (PPT), allowing for the excitation of highly coupled modes unlike previously published results on planar PPTs. High-aspect-ratio ridges showing micrometer dimensions are achieved by dicing PPT plates with a diamond-tipped saw. An adapted metallization is achieved to excite acoustic modes exhibiting electromechanical coupling in excess of 15% with phase velocities up to 10 000 m·s(-1). Theoretical predictions show that these figures may reach values up to 20% and 18 000 m·s(-1), respectively, using an appropriate design.

5.
Article in English | MEDLINE | ID: mdl-23007765

ABSTRACT

Solutions for the development of compact RF passive transducers as an alternative to standard surface or bulk acoustic wave devices are receiving increasing interest. This article presents results on the development of an acoustic band-pass filter based on periodically poled ferroelectric domains in lithium niobate. The fabrication of periodically poled transducers (PPTs) operating in the range of 20 to 650 MHz has been achieved on 3-in (76.2-mm) 500-µm-thick wafers. This kind of transducer is able to excite elliptical as well as longitudinal modes, yielding phase velocities of about 3800 and 6500 ms(-1), respectively. A new type of acoustic band-pass filter is proposed, based on the use of PPTs instead of the SAWs excited by classical interdigital transducers. The design and the fabrication of such a filter are presented, as well as experimental measurements of its electrical response and transfer function. The feasibility of such a PPT-based filter is thereby demonstrated and the limitations of this method are discussed.

6.
Article in English | MEDLINE | ID: mdl-20639159

ABSTRACT

Interface acoustic waves (IAWs) propagate along the boundary between two perfectly bonded solids. For a leakage- free IAW, all displacement fields must be evanescent along the normal to the boundary inside both solids, but leaky IAWs may also exist depending on the selected combination of materials. When at least one of the bonded solids is a piezoelectric material, the IAW can be excited by an interdigital transducer (IDT) located at the interface, provided one can fabricate the transducer and access the electrical contacts. We discuss here the fabrication and characterization of IAW resonators made by indirect bonding of lithium niobate onto silicon via an organic layer. In our fabrication process, IDTs are first patterned over the surface of a Y-cut lithium niobate wafer. A thin layer of SU-8 photo-resist is then spun over the IDTs and lithium niobate to a thickness below one micrometer. The SU-8-covered lithium niobate wafer then is bonded to a silicon wafer. The stack is subsequently cured and baked to enhance the acoustic properties of the interfacial resist. Measurements of resonators are presented, emphasizing the dependence of propagation losses on the resist properties. Comparison with theoretical computations based on periodic finite element/boundary element analysis allows for explanation of the actual operation of the device.

7.
Article in English | MEDLINE | ID: mdl-18334350

ABSTRACT

The demand for high-frequency low-loss filters generates intensive research on innovative wave guide solutions. In this work, a GHz SAW device based on a ZnO/Si structure was fabricated using classical UV photolithography. The thickness of the piezoelectric thin film was optimized and a specific interdigital transducer structure was used to generate third and fifth harmonic guided waves at 2.5 GHz and 3.5 GHz, respectively, with an aluminum strip larger than 1 micrometer. Different modes have been measured and theoretically identified thanks to an advanced finite-element/boundary-elementbased model. Good agreement is found between theory and experiments. The high-frequency modes have been fully characterized, allowing for accurate design of SAW devices exploiting such modes.

8.
Article in English | MEDLINE | ID: mdl-18019253

ABSTRACT

The capability to accurately handle liquids in small volumes is a key point for the development of lab-on-chip devices. In this paper, we investigate an application of surface acoustic waves (SAW) for positioning micro-droplets. A SAW device based on a 2 x 2 matrix of inter-digital transducers (IDTs) has been fabricated on a (YXI)/128 degrees LiNbO3 substrate, which implies displacement and detection in two dimensions of droplets atop a flat surface. Each IDT operates at a given frequency, allowing for an easy addressing of the active channel. Furthermore, very low cross-talk effects were observed as no frequency mixing arose in our device. Continuous as well as pulsed excitations of the IDTs have been studied, yielding, respectively, continuous and step-by-step droplet displacement modes. In addition, we also have used these two excitation types to control the velocity and the position of the droplets. We also have developed a theoretical analysis of the detection mode, which has been validated by experimental assessment.

9.
Article in English | MEDLINE | ID: mdl-17703673

ABSTRACT

This paper presents theoretical and experimental developments for the implementation of surface acoustic waves (SAW) sensors able to detect small concentrations of anhydride fluorhydric (HF) acid in air. Solutions based on the use of surface transverse waves (STW) on quartz (YXlt)/36 degrees/90 degrees have been analyzed to evaluate their sensitivity to HF. Devices have been tested first in a NH4F solution to evaluate the kinetics of the reaction. Measurements then were performed under various gaseous conditions to characterize the sensors when they are submitted to different controlled dilutions of HF in air. STW resonators have been successfully tested in different conditions, with capabilities to detect HF concentration much smaller than 1 ppm.

10.
Article in English | MEDLINE | ID: mdl-17441597

ABSTRACT

The need for high-frequency, wide-band filters has instigated many developments based on combining thin piezoelectric films and high acoustic velocity materials (sapphire, diamond-like carbon, silicon, etc.) to ease the manufacture of devices operating above 2 GHz. In the present work, a technological process has been developed to achieve thin-oriented, single-crystal lithium niobate (LiNbO3) layers deposited on (100) silicon wafers for the fabrication of radio-frequency (RF) surface acoustic wave (SAW) devices. The use of such oriented thin films is expected to favor large coupling coefficients together with a good control of the layer properties, enabling one to chose the best combination of layer orientation to optimize the device. A theoretical analysis of the elastic wave assumed to propagate on such a combination of material is first exposed. Technological aspects then are described briefly. Experimental results are presented and compared to the state of art.


Subject(s)
Acoustics/instrumentation , Crystallization/methods , Membranes, Artificial , Niobium/chemistry , Oxides/chemistry , Silicon/chemistry , Computer Simulation , Equipment Design , Equipment Failure Analysis , Materials Testing , Models, Theoretical , Radiation Dosage , Radio Waves , Radiometry/methods
11.
Sensors (Basel) ; 7(9): 1992-2003, 2007 Sep 25.
Article in English | MEDLINE | ID: mdl-28903210

ABSTRACT

Mass-sensitive electro-acoustic devices such as surface acoustic wave (SAW)micro-balances, capable to operate with aqueous media are particularly favorable for thedevelopment of biosensors. Their dimensions and physical properties offer a large potentialin biological fluid investigations, especially for measuring physical phenomenon (massdeposition, adsorption, pressure...). In this work, we propose a specific gratingconfiguration to lower the influence of viscosity of fluids which reduces the signal dynamicsof the surface wave transducers. A dedicated liquid cell also has been developed to isolatethe electro-active part of the device. The fabrication of the cell is achieved using theSU-8TMphoto-resist, allowing for manufacturing thick structures preventing any contact between thetested liquids and the transducers. Furthermore, the sensing area has been optimized tooptimize the sensor gravimetric sensitivity. The operation of the sensor is illustrated bydetecting bovine serum albumin (BSA) adsorption in the sensing area.

12.
Article in English | MEDLINE | ID: mdl-17111494

ABSTRACT

Thermal and mechanical sensitivities of vibrating structures and wave guides are key parameters for the optimization of high stability resonant devices operating in the ultrasonic frequency range (from a few tenth of kilohertz to a few gigahertz). In this paper, the possibility to simulate and predict temperature coefficients of frequency (TCF) of quartz transducers of any shape as well as their stress sensitivity coefficients is addressed. The theoretical developments based on harmonic finite-element analysis coupled with a variational perturbation method are detailed, showing how to derive the regarded parameters. The proposed approach is validated using a two-dimensional (2-D) model of a plane face-bulk acoustic resonator for which an analytical model can give access to both TCF and stress sensitivity coefficients. It is then applied to a 2-D model of convex plane bulk acoustic resonator of singly rotated quartz and used to compute the first order TCF of a 3-D model of a tuning fork structure. In the latter case, the importance of considering the actual excitation of the device is demonstrated, allowing for the accurate definition of angular loci for which thermal compensation can be expected, in agreement with literature. Possible extensions and improvements of the proposed method is discussed in conclusion.

13.
Article in English | MEDLINE | ID: mdl-16529117

ABSTRACT

The computation of the two-dimensional harmonic spatial-domain Green's function at the surface of a piezoelectric half-space is discussed. Starting from the known form of the Green's function expressed in the spectral domain, the singular contributions are isolated and treated separately. It is found that the surface acoustic wave contributions (i.e., poles in the spectral Green's function) give rise to an anisotropic generalization of the Hankel function H0(2), the spatial Green's function for the scalar two-dimensional wave equation. The asymptotic behavior at infinity and at the origin (for the electrostatic contribution) also are explicitly treated. The remaining nonsingular part of the spectral Green's function is obtained numerically by a combination of fast Fourier transform and quadrature. Illustrations are given in the case of a substrate of Y-cut lithium niobate.


Subject(s)
Algorithms , Electrochemistry/instrumentation , Electrochemistry/methods , Models, Chemical , Transducers , Computer Simulation , Elasticity , Motion , Stress, Mechanical , Vibration
14.
Article in English | MEDLINE | ID: mdl-16471448

ABSTRACT

Micro-machined ultrasonic transducers (MUT) appear as an attractive alternative to standard bulk transducers mainly based on PZT ceramic actuators. However, the simulation of these new devices requires one to take correctly into account their operating conditions. Particularly, most of the MUT structures are periodic, associating a very large number of elementary actuators excited in phase. Furthermore, the development of an equivalent to the Mason model for MUTs would help in the promotion of this new kind of transducers. In this work, we propose a very simple model based on the material resistance theory to describe the flexural motion of a MUT. It is associated with a periodic Green's function development to take into account radiation in water. Basic working principles of MUT then are deduced from computing results, which coincides with already published data on that topic.


Subject(s)
Computer-Aided Design , Models, Theoretical , Transducers , Ultrasonography/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Miniaturization/methods
15.
Article in English | MEDLINE | ID: mdl-16245607

ABSTRACT

The prediction of the temperature sensitivity of surface acoustic wave (SAW) devices still requires improvement because the nature of the implemented surface modes and the devices' complexity strongly change from the early basic Rayleigh-wave-based devices. To address this problem, a theoretical analysis and a numerical tool have been developed to predict the thermal dispersion of general electro-acoustic devices. The proposed model accounts for the electrode contribution to the frequency-temperature law. The computed thermal sensitivities are compared to experimental results for different kinds of substrates and waves.

16.
Ultrasonics ; 43(6): 457-65, 2005 May.
Article in English | MEDLINE | ID: mdl-15823320

ABSTRACT

We report on the 3-D modelling of periodic arrays of capacitive micromachined ultrasonic transducers (cMUTs) operating in fluid. Specific developments have been performed to model biperiodic transducer arrays and to take into account radiation into any stratified media at the front-side as well as the back-side of the device. The model is based on a periodic finite-element-analysis/boundary-element-method (FEA/BEM). It is applied to micromachined ultrasonic transducers (MUTs), based on silicon-nitride-circular-membrane arrays on a silicon substrate, and operating in water. The spectrum characteristics of MUTs excited in phase are investigated, showing that very-large-band emission is achievable as previously demonstrated by many authors. However, other contributions are also found, depending on the excitation conditions, that do not radiate in the fluid. These contributions are identified as guided modes that could generate significant cross-talk effects. The origin and the nature of these modes is analyzed to gain insight in the actual operation of MUTs.


Subject(s)
Ultrasonography/instrumentation , Equipment Design , Finite Element Analysis , Humans , Miniaturization , Periodicity , Silicon/chemistry , Silicon Compounds/chemistry , Transducers , Water
17.
Article in English | MEDLINE | ID: mdl-15478977

ABSTRACT

We introduce the concept of dyadic Green's functions of a laminar plate. These functions generalize classical Green's functions. In addition to relating displacements and stresses at the surface of a medium, they relate these quantities at both the top and the bottom surfaces of a medium of finite thickness and infinite extent in the transverse directions. We describe here the calculation of these functions in the spectral domain and provide some academic examples demonstrating their interest.

18.
Article in English | MEDLINE | ID: mdl-15128223

ABSTRACT

The finite element method/boundary element method (FEM/BEM) computation model applied to surface acoustic wave devices requires the solution of a large linear system for each frequency point. An asymptotic waveform evaluation technique is used to obtain an approximate solution of the linear system that is valid over a large frequency bandwidth. The approximate solution was shown to be very accurate and vastly reduces the computation time.

19.
Article in English | MEDLINE | ID: mdl-14995023

ABSTRACT

Analysis of the quartz properties shows the existence of unexplored angular domains for which Rayleigh waves can be efficiently excited, exhibiting physical characteristics better than the ones of the (ST,X) cut. This paper presents a family of quartz cuts allowing significant improvements of surface acoustic wave (SAW) devices on quartz. A first set of experiments has been performed, confirming the theoretical predictions of the basic properties of SAW on these cuts. A second set of measurements then was achieved to refine the identification of coefficients needed to perform industrial SAW design. A demonstration of the improvements accessible using this new cut is presented. A low loss SAW filter working at 71 MHz has been fabricated using smaller aluminum thickness than that for standard quartz cuts, and exhibiting all the properties required for its industrial implementation.

20.
Article in English | MEDLINE | ID: mdl-15690729

ABSTRACT

Several models exist for analyzing the wave-guiding effect of a reflective grating. On the one hand, there are models based on scalar waveguide theory. These models consider that a device can be described as being made of several regions having different velocities. On the other hand, an extension of the coupling of modes (COM) model taking into account the transverse dimension has been developed. This paraxial COM model predicts that guidance is possible even when there is no velocity difference between the interior and the exterior of the grating region. Guidance, under such circumstances, is due only to differences in reflectivity between regions. Following from this insight, a new approach has been developed: guided modes and the continuum of radiating modes are first determined. At each period, reflections then are considered as occurring only in the reflective regions, so that the modes are truncated. Thus, at each reflection (and transmission), each mode is converted into a distribution of all modes. Dispersion curves very similar to those shown by other researchers are obtained by this method. They show, in particular, the existence of guided modes even when the wave velocity in all regions is identical. This model can be used to more easily analyze practical devices and exhibits a good agreement with experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL
...