Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36079606

ABSTRACT

The genus Viola (Violaceae) is among the 40-50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker's classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.

2.
PLoS One ; 15(3): e0229726, 2020.
Article in English | MEDLINE | ID: mdl-32160228

ABSTRACT

Viola pubescens is a perennial, mixed breeding herb that produces both chasmogamous and cleistogamous flowers at different times of the season. Once bud type is specified, it does not convert from one form to the other. While temporal production of the two flowers is known to be influenced by environmental factors, the specific environmental cues that signal emergence of each flower type have not been empirically studied. To investigate the environmental parameters driving seasonal development of chasmogamous versus cleistogamous flowers, a native V. pubescens population was examined during the spring and summer of 2016 and 2017. Measurements of light quantity, canopy cover, photoperiod, temperature, soil moisture, soil pH, and the number of chasmogamous and cleistogamous buds were collected on either a weekly or biweekly basis. Independent zero-inflated negative binomial (ZINB) regressions were used to model the odds of bud production (0 versus 1 bud) and bud counts (≥ 1 bud) as a function of the environmental variables. Results of the ZINB models highlight key differences between the environmental variables that influence chasmogamous versus cleistogamous bud development and counts. In addition to the ZINB regressions, individual logistic regressions were fit to the bud data. The logistic models support results of the ZINB models and, more crucially, identify specific environmental thresholds at which each bud type is probable. Collectively, this work offers novel insight into how environmental variables shape temporal development of chasmogamous and cleistogamous flowers, suggests distinct threshold values that may aid in selectively inducing each flower type, and provides insight into how climatic change may impact mixed breeding species.


Subject(s)
Breeding , Environment , Flowers/physiology , Viola/physiology , Light , Photoperiod , Probability , Regression Analysis , Seasons , Soil , Temperature , Time Factors
4.
Front Plant Sci ; 10: 156, 2019.
Article in English | MEDLINE | ID: mdl-30828342

ABSTRACT

Viola is a large genus with worldwide distribution and many traits not currently exemplified in model plants including unique breeding systems and the production of cyclotides. Here we report de novo genome assembly and transcriptomic analyses of the non-model species Viola pubescens using short-read DNA sequencing data and RNA-Seq from eight diverse tissues. First, V. pubescens genome size was estimated through flow cytometry, resulting in an approximate haploid genome of 455 Mbp. Next, the draft V. pubescens genome was sequenced and assembled resulting in 264,035,065 read pairs and 161,038 contigs with an N50 length of 3,455 base pairs (bp). RNA-Seq data were then assembled into tissue-specific transcripts. Together, the DNA and transcript data generated 38,081 ab initio gene models which were functionally annotated based on homology to Arabidopsis thaliana genes and Pfam domains. Gene expression was visualized for each tissue via principal component analysis and hierarchical clustering, and gene co-expression analysis identified 20 modules of tissue-specific transcriptional networks. Some of these modules highlight genetic differences between chasmogamous and cleistogamous flowers and may provide insight into V. pubescens' mixed breeding system. Orthologous clustering with the proteomes of A. thaliana and Populus trichocarpa revealed 8,531 sequences unique to V. pubescens, including 81 novel cyclotide precursor sequences. Cyclotides are plant peptides characterized by a stable, cyclic cystine knot motif, making them strong candidates for drug scaffolding and protein engineering. Analysis of the RNA-Seq data for these cyclotide transcripts revealed diverse expression patterns both between transcripts and tissues. The diversity of these cyclotides was also highlighted in a maximum likelihood protein cladogram containing V. pubescens cyclotides and published cyclotide sequences from other Violaceae and Rubiaceae species. Collectively, this work provides the most comprehensive sequence resource for Viola, offers valuable transcriptomic insight into V. pubescens, and will facilitate future functional genomics research in Viola and other diverse plant groups.

5.
Syst Biol ; 61(1): 107-26, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21918178

ABSTRACT

The phylogenies of allopolyploids take the shape of networks and cannot be adequately represented as bifurcating trees. Especially for high polyploids (i.e., organisms with more than six sets of nuclear chromosomes), the signatures of gene homoeolog loss, deep coalescence, and polyploidy may become confounded, with the result that gene trees may be congruent with more than one species network. Herein, we obtained the most parsimonious species network by objective comparison of competing scenarios involving polyploidization and homoeolog loss in a high-polyploid lineage of violets (Viola, Violaceae) mostly or entirely restricted to North America, Central America, or Hawaii. We amplified homoeologs of the low-copy nuclear gene, glucose-6-phosphate isomerase (GPI), by single-molecule polymerase chain reaction (PCR) and the chloroplast trnL-F region by conventional PCR for 51 species and subspecies. Topological incongruence among GPI homoeolog subclades, owing to deep coalescence and two instances of putative loss (or lack of detection) of homoeologs, were reconciled by applying the maximum tree topology for each subclade. The most parsimonious species network and the fossil-based calibration of the homoeolog tree favored monophyly of the high polyploids, which has resulted from allodecaploidization 9-14 Ma, involving sympatric ancestors from the extant Viola sections Chamaemelanium (diploid), Plagiostigma (paleotetraploid), and Viola (paleotetraploid). Although two of the high-polyploid lineages (Boreali-Americanae, Pedatae) remained decaploid, recurrent polyploidization with tetraploids of section Plagiostigma within the last 5 Ma has resulted in two 14-ploid lineages (Mexicanae, Nosphinium) and one 18-ploid lineage (Langsdorffianae). This implies a more complex phylogenetic and biogeographic origin of the Hawaiian violets (Nosphinium) than that previously inferred from rDNA data and illustrates the necessity of considering polyploidy in phylogenetic and biogeographic reconstruction.


Subject(s)
Evolution, Molecular , Phylogeny , Viola/classification , Viola/genetics , Cell Nucleus/genetics , DNA, Chloroplast/genetics , DNA, Plant/genetics , Glucose-6-Phosphate Isomerase/genetics , Hawaii , North America , Polymerase Chain Reaction , Polyploidy , RNA, Plant/genetics , Sequence Analysis, DNA , Viola/chemistry
6.
Am J Bot ; 96(11): 2087-99, 2009 Nov.
Article in English | MEDLINE | ID: mdl-21622328

ABSTRACT

The endemic Hawaiian flora offers remarkable opportunities to study the patterns of plant morphological and molecular evolution. The Hawaiian violets are a monophyletic lineage of nine taxa distributed across six main islands of the Hawaiian archipelago. To describe the evolutionary relationships, biogeography, and molecular evolution rates of the Hawaiian violets, we conducted a phylogenetic study using nuclear rDNA internal transcribed spacer sequences from specimens of each species. Parsimony, maximum likelihood (ML), and Bayesian inference reconstructions of island colonization and radiation strongly suggest that the Hawaiian violets first colonized the Maui Nui Complex, quickly radiated to Kaua'i and O'ahu, and recently dispersed to Hawai'i. The lineage consists of "wet" and "dry" clades restricted to distinct precipitation regimes. The ML and Bayesian inference reconstructions of shifts in habitat, habit, and leaf shape indicate that ecologically analogous taxa have undergone parallel evolution in leaf morphology and habit. This parallel evolution correlates with shifts to specialized habitats. Relative rate tests showed that woody and herbaceous sister species possess equal molecular evolution rates. The incongruity of molecular evolution rates in taxa on younger islands suggests that these rates may not be determined by growth form (or lifespan) alone, but may be influenced by complex dispersal events.

7.
Mol Phylogenet Evol ; 30(2): 378-85, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14715229

ABSTRACT

We test competing hypotheses of relationships among Aroids (Araceae) and duckweeds (Lemnaceae) using sequences of the trnL-trnF spacer region of the chloroplast genome. Included in the analysis were 22 aroid genera including Pistia and five genera of Lemnaceae including the recently segregated genus Landoltia. Aponogeton was used as an outgroup to root the tree. A data set of 522 aligned nucleotides yielded maximum parsimony and maximum likelihood trees similar to those previously derived from restriction site data. Pistia and the Lemnaceae are placed in two separate and well-supported clades, suggesting at least two independent origins of the floating aquatic growth form within the aroid clade. Within the Lemnaceae there is only partial support for the paradigm of sequential morphological reduction, given that Wolffia is sister to Wolffiella+Lemna. As in the results of the restriction site analysis, pantropical Pistia is placed with Colocasia and Typhonium of southeastern Asia, indicative of Old World affinities. Branch lengths leading to duckweed terminal taxa are much longer relative to other ingroup taxa (including Pistia), evidently as a result of higher rates of nucleotide substitutions and insertion/deletion events. Morphological reduction within the duckweeds roughly correlates with accelerated chloroplast genome evolution.


Subject(s)
Chloroplasts/genetics , DNA, Intergenic , Plants/genetics , Genes, Plant , Genetic Variation , Genome, Plant , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...