Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 142(1): 62-72, 2023 07 06.
Article in English | MEDLINE | ID: mdl-36796019

ABSTRACT

Bruton tyrosine kinase (BTK), a nonreceptor tyrosine kinase, is a major therapeutic target for B-cell-driven malignancies. However, approved covalent BTK inhibitors (cBTKis) are associated with treatment limitations because of off-target side effects, suboptimal oral pharmacology, and development of resistance mutations (eg, C481) that prevent inhibitor binding. Here, we describe the preclinical profile of pirtobrutinib, a potent, highly selective, noncovalent (reversible) BTK inhibitor. Pirtobrutinib binds BTK with an extensive network of interactions to BTK and water molecules in the adenosine triphosphate binding region and shows no direct interaction with C481. Consequently, pirtobrutinib inhibits both BTK and BTK C481 substitution mutants in enzymatic and cell-based assays with similar potencies. In differential scanning fluorimetry studies, BTK bound to pirtobrutinib exhibited a higher melting temperature than cBTKi-bound BTK. Pirtobrutinib, but not cBTKis, prevented Y551 phosphorylation in the activation loop. These data suggest that pirtobrutinib uniquely stabilizes BTK in a closed, inactive conformation. Pirtobrutinib inhibits BTK signaling and cell proliferation in multiple B-cell lymphoma cell lines, and significantly inhibits tumor growth in human lymphoma xenografts in vivo. Enzymatic profiling showed that pirtobrutinib was highly selective for BTK in >98% of the human kinome, and in follow-up cellular studies pirtobrutinib retained >100-fold selectivity over other tested kinases. Collectively, these findings suggest that pirtobrutinib represents a novel BTK inhibitor with improved selectivity and unique pharmacologic, biophysical, and structural attributes with the potential to treat B-cell-driven cancers with improved precision and tolerability. Pirtobrutinib is being tested in phase 3 clinical studies for a variety of B-cell malignancies.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Lymphoma , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Humans , Animals , Xenograft Model Antitumor Assays , Lymphoma/drug therapy , Drug Evaluation, Preclinical , Cell Line, Tumor , Mice, Inbred NOD , Male , Mice, SCID , Molecular Conformation , Mice
2.
Nano Lett ; 21(13): 5493-5499, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34192467

ABSTRACT

A fundamental understanding and advancement of nanopatterning and nanometrology are essential in the future development of nanotechnology, atomic scale manipulation, and quantum technology industries. Scanning probe-based patterning/imaging techniques have been attractive for many research groups to conduct their research in nanoscale device fabrication and nanotechnology mainly due to its cost-effective process; however, the current tip materials in these techniques suffer from poor durability, limited resolution, and relatively high fabrication costs. Here, we report on employing GaN nanowires as a robust semiconductor material in scanning probe lithography (SPL) and microscopy (SPM) with a relatively low-cost fabrication process and the capability to provide sub-10 nm lithography and atomic scale (<1 nm) patterning resolution in field-emission scanning probe lithography (FE-SPL) and scanning tunneling microscopy (STM), respectively. We demonstrate that GaN NWs are great candidates for advanced SPL and imaging that can provide atomic resolution imaging and sub-10 nm nanopatterning on different materials in both vacuum and ambient operations.


Subject(s)
Nanowires , Microscopy , Microscopy, Scanning Tunneling , Nanotechnology , Printing
3.
J Thorac Oncol ; 15(4): 541-549, 2020 04.
Article in English | MEDLINE | ID: mdl-31988000

ABSTRACT

INTRODUCTION: Novel rearranged in transfection (RET)-specific tyrosine kinase inhibitors (TKIs) such as selpercatinib (LOXO-292) have shown unprecedented efficacy in tumors positive for RET fusions or mutations, notably RET fusion-positive NSCLC and RET-mutated medullary thyroid cancer (MTC). However, the mechanisms of resistance to these agents have not yet been described. METHODS: Analysis was performed of circulating tumor DNA and tissue in patients with RET fusion-positive NSCLC and RET-mutation positive MTC who developed disease progression after an initial response to selpercatinib. Acquired resistance was modeled preclinically using a CCDC6-RET fusion-positive NSCLC patient-derived xenograft. The inhibitory activity of anti-RET multikinase inhibitors and selective RET TKIs was evaluated in enzyme and cell-based assays. RESULTS: After a dramatic initial response to selpercatinib in a patient with KIF5B-RET NSCLC, analysis of circulating tumor DNA revealed emergence of RET G810R, G810S, and G810C mutations in the RET solvent front before the emergence of clinical resistance. Postmortem biopsy studies reported intratumor and intertumor heterogeneity with distinct disease subclones containing G810S, G810R, and G810C mutations in multiple disease sites indicative of convergent evolution on the G810 residue resulting in a common mechanism of resistance. Acquired mutations in RET G810 were identified in tumor tissue from a second patient with CCDC6-RET fusion-positive NSCLC and in plasma from patients with additional RET fusion-positive NSCLC and RET-mutant MTC progressing on an ongoing phase 1 and 2 trial of selpercatinib. Preclinical studies reported the presence of RET G810R mutations in a CCDC6-RET patient-derived xenograft (from a patient with NSCLC) model of acquired resistance to selpercatinib. Structural modeling predicted that these mutations sterically hinder the binding of selpercatinib, and in vitro assays confirmed loss of activity for both anti-RET multikinase inhibitors and selective RET TKIs. CONCLUSIONS: RET G810 solvent front mutations represent the first described recurrent mechanism of resistance to selective RET inhibition with selpercatinib. Development of potent inhibitor of these mutations and maintaining activity against RET gatekeeper mutations could be an effective strategy to target resistance to selective RET inhibitors.


Subject(s)
Lung Neoplasms , Proto-Oncogene Proteins c-ret , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-ret/genetics , Pyrazoles , Pyridines , Solvents , Transfection
4.
Cancer Discov ; 10(1): 54-71, 2020 01.
Article in English | MEDLINE | ID: mdl-31658955

ABSTRACT

Despite decades of research, efforts to directly target KRAS have been challenging. MRTX849 was identified as a potent, selective, and covalent KRASG12C inhibitor that exhibits favorable drug-like properties, selectively modifies mutant cysteine 12 in GDP-bound KRASG12C, and inhibits KRAS-dependent signaling. MRTX849 demonstrated pronounced tumor regression in 17 of 26 (65%) KRASG12C-positive cell line- and patient-derived xenograft models from multiple tumor types, and objective responses have been observed in patients with KRASG12C-positive lung and colon adenocarcinomas. Comprehensive pharmacodynamic and pharmacogenomic profiling in sensitive and partially resistant nonclinical models identified mechanisms implicated in limiting antitumor activity including KRAS nucleotide cycling and pathways that induce feedback reactivation and/or bypass KRAS dependence. These factors included activation of receptor tyrosine kinases (RTK), bypass of KRAS dependence, and genetic dysregulation of cell cycle. Combinations of MRTX849 with agents that target RTKs, mTOR, or cell cycle demonstrated enhanced response and marked tumor regression in several tumor models, including MRTX849-refractory models. SIGNIFICANCE: The discovery of MRTX849 provides a long-awaited opportunity to selectively target KRASG12C in patients. The in-depth characterization of MRTX849 activity, elucidation of response and resistance mechanisms, and identification of effective combinations provide new insight toward KRAS dependence and the rational development of this class of agents.See related commentary by Klempner and Hata, p. 20.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Acetonitriles/therapeutic use , Adenocarcinoma of Lung/drug therapy , Antineoplastic Agents/therapeutic use , Disease Models, Animal , Lung Neoplasms/drug therapy , Mutation , Piperazines/therapeutic use , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Pyrrolidines/therapeutic use , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Animals , Apoptosis , Cell Proliferation , Clinical Trials, Phase I as Topic , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Middle Aged , Prognosis , Pyrimidines , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
ACS Med Chem Lett ; 9(12): 1230-1234, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30613331

ABSTRACT

KRAS is the most frequently mutated driver oncogene in human cancer, and KRAS mutations are commonly associated with poor prognosis and resistance to standard treatment. The ability to effectively target and block the function of mutated KRAS has remained elusive despite decades of research. Recent findings have demonstrated that directly targeting KRAS-G12C with electrophilic small molecules that covalently modify the mutated codon 12 cysteine is feasible. We have discovered a series of tetrahydropyridopyrimidines as irreversible covalent inhibitors of KRAS-G12C with in vivo activity. The PK/PD and efficacy of compound 13 will be highlighted.

6.
J Med Chem ; 57(5): 1753-69, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-23672640

ABSTRACT

HCV serine protease NS3 represents an attractive drug target because it is not only essential for viral replication but also implicated in the viral evasion of the host immune response pathway through direct cleavage of key proteins in the human innate immune system. Through structure-based drug design and optimization, macrocyclic peptidomimetic molecules bearing both a lipophilic P2 isoindoline carbamate and a P1/P1' acylsulfonamide/acylsulfamide carboxylic acid bioisostere were prepared that possessed subnanomolar potency against the NS3 protease in a subgenomic replicon-based cellular assay (Huh-7). Danoprevir (compound 49) was selected as the clinical development candidate for its favorable potency profile across multiple HCV genotypes and key mutant strains and for its good in vitro ADME profiles and in vivo target tissue (liver) exposures across multiple animal species. X-ray crystallographic studies elucidated several key features in the binding of danoprevir to HCV NS3 protease and proved invaluable to our iterative structure-based design strategy.


Subject(s)
Antiviral Agents/therapeutic use , Drug Discovery , Lactams/therapeutic use , Protease Inhibitors/therapeutic use , Sulfonamides/therapeutic use , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Crystallography, X-Ray , Cyclopropanes , Dogs , Isoindoles , Lactams/chemistry , Lactams/pharmacology , Lactams, Macrocyclic , Macaca fascicularis , Molecular Structure , Proline/analogs & derivatives , Protease Inhibitors/pharmacology , Rats , Sulfonamides/chemistry , Sulfonamides/pharmacology
7.
Sci Signal ; 5(223): ra37, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22569334

ABSTRACT

The protein serine-threonine kinase Akt undergoes a substantial conformational change upon activation, which is induced by the phosphorylation of two critical regulatory residues, threonine 308 and serine 473. Paradoxically, treating cells with adenosine 5'-triphosphate (ATP)-competitive inhibitors of Akt results in increased phosphorylation of both residues. We show that binding of ATP-competitive inhibitors stabilized a conformation in which both phosphorylated sites were inaccessible to phosphatases. ATP binding also produced this protection of the phosphorylated sites, whereas interaction with its hydrolysis product adenosine 5'-diphosphate (ADP) or allosteric Akt inhibitors resulted in increased accessibility of these phosphorylated residues. ATP-competitive inhibitors mimicked ATP by targeting active Akt. Forms of Akt activated by an oncogenic mutation or myristoylation were more potently inhibited by the ATP-competitive inhibitors than was wild-type Akt. These data support a new model of kinase regulation, wherein nucleotides modulate an on-off switch in Akt through conformational changes, which is disrupted by ATP-competitive inhibitors.


Subject(s)
Adenosine Triphosphate/metabolism , Phosphoric Monoester Hydrolases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Adenosine Diphosphate/metabolism , Allosteric Regulation , Binding Sites , Models, Molecular , Phosphorylation
8.
Biochemistry ; 48(11): 2559-68, 2009 Mar 24.
Article in English | MEDLINE | ID: mdl-19209850

ABSTRACT

The protease activity of hepatitis C virus nonstructural protein 3 (NS3) is essential for viral replication. ITMN-191, a macrocyclic inhibitor of the NS3 protease active site, promotes rapid, multilog viral load reductions in chronic HCV patients. Here, ITMN-191 is shown to be a potent inhibitor of NS3 with a two-step binding mechanism. Progress curves are consistent with the formation of an initial collision complex (EI) that isomerizes to a highly stable complex (EI*) from which ITMN-191 dissociates very slowly. K(i), the dissociation constant of EI, is 100 nM, and the rate constant for conversion of EI to EI* is 6.2 x 10(-2) s(-1). Binding experiments using protein fluorescence confirm this isomerization rate. From progress curve analysis, the rate constant for dissociation of ITMN-191 from the EI* complex is 3.8 x 10(-5) s(-1) with a calculated complex half-life of approximately 5 h and a true biochemical potency (K(i)*) of approximately 62 pM. Surface plasmon resonance studies and assessment of enzyme reactivation following dilution of the EI* complex confirm slow dissociation and suggest that the half-life may be considerably longer. Abrogation of the tight binding and slow dissociative properties of ITMN-191 is observed with proteases that carry the R155K or D168A substitution, each of which is likely in drug resistant mutants. Slow dissociation is not observed with closely related macrocyclic inhibitors of NS3, suggesting that members of this class may display distinct binding kinetics.


Subject(s)
Hepacivirus/enzymology , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Amino Acid Substitution , Hepacivirus/chemistry , Hepacivirus/genetics , Kinetics , Protease Inhibitors/chemical synthesis , Protein Binding , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
9.
Nano Lett ; 6(1): 45-9, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16402785

ABSTRACT

We report single molecule laser absorption by carbon nanotubes stamped under ultrahigh vacuum onto Si(100)2x1:H surfaces. Absorption is detected by scanning tunneling microscopy. Images are obtained with and without modulated laser excitation using lock-in amplification and a rear-illumination geometry to reduce thermal effects. Noise appears at topographic edges and is analyzed by a quantitative model in terms of scan speed, mechanical instabilities, and feedback current fluctuations at the edge of the nanotubes. Noise due to mechanical instabilities is shown to persist even in the limit of slow scan speed.

SELECTION OF CITATIONS
SEARCH DETAIL
...