Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
3.
Mater Sci Eng C Mater Biol Appl ; 45: 446-54, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25491850

ABSTRACT

Development of successful small-diameter vascular grafts constitutes a real challenge to biomaterial engineering. In most cases these grafts fail in-vivo due to the presence of a mechanical mismatch between the native vessel and the vascular graft. Biomechanical characterization of real native vessels provides significant information for synthetic graft development. Electrospun nanofibrous vascular grafts emerge as a potential tailor made solution to this problem. PLLA-electrospun nanofibrous tubular structures were prepared and selected as model bioresorbable grafts. An experimental setup, using gold standard and high resolution ultrasound techniques, was adapted to characterize in vitro the poly(L-lactic acid) (PLLA) electrospun structures. The grafts were subjected to near physiologic pulsated pressure conditions, following the pressure-diameter loop approach and the criteria stated in the international standard for cardiovascular implants-tubular vascular prostheses. Additionally, ovine femoral arteries were subjected to a similar evaluation. Measurements of pressure and diameter variations allowed the estimation of dynamical compliance (%C, 10(-2) mmHg) and the pressure-strain elastic modulus (E(Pε), 10(6) dyn cm(-2)) of the abovementioned vessels (grafts and arteries). Nanofibrous PLLA showed a decrease in %C (1.38±0.21, 0.93±0.13 and 0.76±0.15) concomitant to an increase in EPε (10.57±0.97, 14.31±1.47 and 17.63±2.61) corresponding to pressure ranges of 50 to 90 mmHg, 80 to 120 mmHg and 100 to 150 mmHg, respectively. Furthermore, femoral arteries exhibited a decrease in %C (8.52±1.15 and 0.79±0.20) and an increase in E(Pε) (1.66±0.30 and 15.76±4.78) corresponding to pressure ranges of 50-90 mmHg (elastin zone) and 100-130 mmHg (collagen zone). Arterial mechanics framework, extensively applied in our previous works, was successfully used to characterize PLLA vascular grafts in vitro, although its application can be directly extended to in vivo experiences, in conscious and chronically instrumented animals. The specific design and construction of the electrospun nanofibrous PLLA vascular grafts assessed in this work, showed similar mechanical properties as the ones observed in femoral arteries, at the collagen pressure range.


Subject(s)
Biocompatible Materials/chemistry , Blood Vessel Prosthesis , Elasticity , Lactic Acid/chemistry , Nanofibers/chemistry , Polymers/chemistry , Animals , Biomechanical Phenomena , Collagen/chemistry , Elastin/chemistry , Femoral Artery/chemistry , Male , Polyesters , Sheep , Tissue Scaffolds
4.
Mater Sci Eng C Mater Biol Appl ; 42: 489-99, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25063146

ABSTRACT

The present study is focused on the electrospinning process as a versatile technique to obtain nanofibrous tubular structures for potential applications in vascular tissue engineering. A bilayered scaffolding structure composed of poly(L-lactic acid) (PLLA)/bioresorbable segmented polyurethane (SPEU) blends for small-diameter (5mm) vascular bypass grafts was obtained by multilayering electrospinning. Polymer blend ratios were chosen to mimic the media and adventitia layers. The influence of the different electrospinning parameters into the fiber formation, fiber morphology and fiber mean diameter for PLLA, SPEU and two PLLA/SPEU blends were studied. Flat and two-parallel plate collectors were used to analyze the effect of the electrostatic field on the PLLA nanofiber alignment in the rotating mandrel. Membrane topography resulted in random or aligned nanofibrous structures depending on the auxiliary collector setup used. Finally, composition, surface hydrophilicity, thermal properties and morphology of nanofibrous scaffolds were characterized and discussed. Since the development of tissue engineered microvascular prostheses is still a challenge, the prepared scaffolding tubular structures are promising candidates for vascular tissue engineering.


Subject(s)
Electrochemical Techniques/methods , Lactic Acid/chemistry , Nanofibers/chemistry , Nanotechnology/methods , Polymers/chemistry , Polyurethanes/chemistry , Materials Testing , Polyesters , Temperature
5.
Med Biol Eng Comput ; 38(2): 226-31, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10829418

ABSTRACT

Porcine aortic valves used as cardiac valve bioprostheses are well adapted to physiological functions in the short term, but they lack long-term durability. Several multi-step extractions have been performed to obtain a perfectly acellular matrix. A new physical methodology is proposed to evaluate the resulting fibrous protein damage after biochemical extraction (TRI-COL and SDS). Thermal analysis techniques are adapted to collagen and elastin characterisation in the solid state. The aortic tissue thermal transitions are determined by differential scanning calorimetry (DSC): elastin glass transition is observed around 200 degrees C, and collagen denaturation is observed around 230 degrees C. These parameters are characteristic of the elastin network arrangement and of collagen triple-helix stability. The technique of thermostimulated currents (TSC) is well suited to specify the chain dynamics of proteins. The low-temperature relaxations observed in both collagen and elastin are associated with localised motions, whereas the high-temperature modes are attributed to more delocalized motions of the chains. Therefore TSC and DSC spectrometries allow physical parameters specific to collagen and elastin to be obtained and their interaction in aortic tissues to be determined. According to the significant evolution of these parameters on SDS samples, the destabilizing effect of this detergent is highlighted.


Subject(s)
Bioprosthesis , Collagen/chemistry , Elastin/chemistry , Heart Valve Prosthesis , Animals , Calorimetry, Differential Scanning , Humans , Temperature
6.
Acta Physiol Scand ; 167(4): 317-23, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10632633

ABSTRACT

In this brief review, the modulatory influence of essential myosin light chain (MLC) isoforms on muscle cell contractility is discussed. Specific interest is focused on the expression of the MLC1Sa and MLC1Sb isoforms in the slow-twitch soleus muscle in male and female rats, during ageing and after thyroid hormone treatment. According to two-dimensional gel electrophoresis analysis, the MLC1Sa/MLC1SB ratio increased during ageing in both males and females in parallel with the age-related decrease in shortening velocity reported in muscle fibres expressing the slow (type 1) myosin heavy chain (MHC) isoform. However, the MLC1Sa and MLC1Sb isoform expression responded to thyroid hormone treatment in a complex manner which did not parallel the age-related changes in shortening velocity reported in hyperthyroid animals. Thus, if MLC1Sa and MLC1Sb isoforms modulate shortening velocity in type 1 fibres, then other modulators of shortening velocity are not regulated by thyroid hormone in co-ordination with these essential MLCs.


Subject(s)
Aging/metabolism , Muscle, Skeletal/metabolism , Myosin Light Chains/biosynthesis , Sex Characteristics , Thyroid Hormones/metabolism , Aging/physiology , Animals , Female , Male , Muscle Contraction , Muscle, Skeletal/physiology , Protein Isoforms/biosynthesis , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...