Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(24): 246901, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38181143

ABSTRACT

The development of patterned multiquantum well heterostructures in GaAs/AlGaAs waveguides has recently made it possible to achieve exciton-polariton condensation in a topologically protected bound state in the continuum (BIC). Polariton condensation was shown to occur above a saddle point of the two-dimensional polariton dispersion in a one-dimensional photonic crystal waveguide. A rigorous analysis of the condensation phenomenon in these systems, as well as the role of the BIC, is still missing. In the present Letter, we theoretically and experimentally fill this gap by showing that polariton confinement resulting from the negative effective mass and the photonic energy gap in the dispersion play a key role in enhancing the relaxation toward the condensed state. In fact, our results show that low-threshold polariton condensation is achieved within the effective trap created by the exciting laser spot, regardless of whether the resulting confined mode is long-lived (polariton BIC) or short-lived (lossy mode). In both cases, the spatial quantization of the polariton condensate and the threshold differences associated to the corresponding state lifetime are measured and characterized. For a given negative mass, a slightly lower condensation threshold from the polariton BIC mode is found and associated to its reduced radiative losses, as compared to the lossy one.

2.
Nature ; 605(7910): 447-452, 2022 05.
Article in English | MEDLINE | ID: mdl-35585343

ABSTRACT

Bound states in the continuum (BICs)1-3 are peculiar topological states that, when realized in a planar photonic crystal lattice, are symmetry-protected from radiating in the far field despite lying within the light cone4. These BICs possess an invariant topological charge given by the winding number of the polarization vectors5, similar to vortices in quantum fluids such as superfluid helium and atomic Bose-Einstein condensates. In spite of several reports of optical BICs in patterned dielectric slabs with evidence of lasing, their potential as topologically protected states with theoretically infinite lifetime has not yet been fully exploited. Here we show non-equilibrium Bose-Einstein condensation of polaritons-hybrid light-matter excitations-occurring in a BIC thanks to its peculiar non-radiative nature, which favours polariton accumulation. The combination of the ultralong BIC lifetime and the tight confinement of the waveguide geometry enables the achievement of an extremely low threshold density for condensation, which is reached not in the dispersion minimum but at a saddle point in reciprocal space. By bridging bosonic condensation and symmetry-protected radiation eigenmodes, we reveal ways of imparting topological properties onto macroscopic quantum states with unexplored dispersion features. Such an observation may open a route towards energy-efficient polariton condensation in cost-effective integrated devices, ultimately suited for the development of hybrid light-matter optical circuits.

3.
Phys Rev Lett ; 126(13): 137401, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33861133

ABSTRACT

Exciton-polaritons are hybrid light-matter excitations arising from the nonperturbative coupling of a photonic mode and an excitonic resonance. Behaving as interacting photons, they show optical third-order nonlinearities providing effects such as optical parametric oscillation or amplification. It has been suggested that polariton-polariton interactions can be greatly enhanced by inducing aligned electric dipoles in their excitonic part. However, direct evidence of a true particle-particle interaction, such as superfluidity or parametric scattering, is still missing. In this Letter, we demonstrate that dipolar interactions can be used to enhance parametric effects such as self-phase modulation in waveguide polaritons. By quantifying these optical nonlinearities, we provide a reliable experimental measurement of the direct dipolar enhancement of polariton-polariton interactions.

4.
Nature ; 578(7795): 381-385, 2020 02.
Article in English | MEDLINE | ID: mdl-32076220

ABSTRACT

Topological physics relies on the structure of the eigenstates of the Hamiltonians. The geometry of the eigenstates is encoded in the quantum geometric tensor1-comprising the Berry curvature2 (crucial for topological matter)3 and the quantum metric4, which defines the distance between the eigenstates. Knowledge of the quantum metric is essential for understanding many phenomena, such as superfluidity in flat bands5, orbital magnetic susceptibility6,7, the exciton Lamb shift8 and the non-adiabatic anomalous Hall effect6,9. However, the quantum geometry of energy bands has not been measured. Here we report the direct measurement of both the Berry curvature and the quantum metric in a two-dimensional continuous medium-a high-finesse planar microcavity10-together with the related anomalous Hall drift. The microcavity hosts strongly coupled exciton-photon modes (exciton polaritons) that are subject to photonic spin-orbit coupling11 from which Dirac cones emerge12, and to exciton Zeeman splitting, breaking time-reversal symmetry. The monopolar and half-skyrmion pseudospin textures are measured using polarization-resolved photoluminescence. The associated quantum geometry of the bands is extracted, enabling prediction of the anomalous Hall drift, which we measure independently using high-resolution spatially resolved epifluorescence. Our results unveil the intrinsic chirality of photonic modes, the cornerstone of topological photonics13-15. These results also experimentally validate the semiclassical description of wavepacket motion in geometrically non-trivial bands9,16. The use of exciton polaritons (interacting photons) opens up possibilities for future studies of quantum fluid physics in topological systems.

5.
Sci Adv ; 5(5): eaav9967, 2019 May.
Article in English | MEDLINE | ID: mdl-31172027

ABSTRACT

Polaritonic devices exploit the coherent coupling between excitonic and photonic degrees of freedom to perform highly nonlinear operations with low input powers. Most of the current results exploit excitons in epitaxially grown quantum wells and require low-temperature operation, while viable alternatives have yet to be found at room temperature. We show that large single-crystal flakes of two-dimensional layered perovskite are able to sustain strong polariton nonlinearities at room temperature without the need to be embedded in an optical cavity formed by highly reflecting mirrors. In particular, exciton-exciton interaction energies are shown to be spin dependent, remarkably similar to the ones known for inorganic quantum wells at cryogenic temperatures, and more than one order of magnitude larger than alternative room temperature polariton devices reported so far. Because of their easy fabrication, large dipolar oscillator strengths, and strong nonlinearities, these materials pave the way for realization of polariton devices at room temperature.

6.
Sci Rep ; 6: 37980, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27922021

ABSTRACT

The Hanbury Brown-Twiss effect is one of the celebrated phenomenologies of modern physics that accommodates equally well classical (interferences of waves) and quantum (correlations between indistinguishable particles) interpretations. The effect was discovered in the late thirties with a basic observation of Hanbury Brown that radio-pulses from two distinct antennas generate signals on the oscilloscope that wiggle similarly to the naked eye. When Hanbury Brown and his mathematician colleague Twiss took the obvious step to propose bringing the effect in the optical range, they met with considerable opposition as single-photon interferences were deemed impossible. The Hanbury Brown-Twiss effect is nowadays universally accepted and, being so fundamental, embodies many subtleties of our understanding of the wave/particle dual nature of light. Thanks to a novel experimental technique, we report here a generalized version of the Hanbury Brown-Twiss effect to include the frequency of the detected light, or, from the particle point of view, the energy of the detected photons. Our source of light is a polariton condensate, that allows high-resolution filtering of a spectrally broad source with a high degree of coherence. In addition to the known tendencies of indistinguishable photons to arrive together on the detector, we find that photons of different colors present the opposite characteristic of avoiding each others. We postulate that fermions can be similarly brought to exhibit positive (boson-like) correlations by frequency filtering.

7.
Nat Commun ; 6: 8993, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26634817

ABSTRACT

Microcavity polaritons are two-dimensional bosonic fluids with strong nonlinearities, composed of coupled photonic and electronic excitations. In their condensed form, they display quantum hydrodynamic features similar to atomic Bose-Einstein condensates, such as long-range coherence, superfluidity and quantized vorticity. Here we report the unique phenomenology that is observed when a pulse of light impacts the polariton vacuum: the fluid which is suddenly created does not splash but instead coheres into a very bright spot. The real-space collapse into a sharp peak is at odd with the repulsive interactions of polaritons and their positive mass, suggesting that an unconventional mechanism is at play. Our modelling devises a possible explanation in the self-trapping due to a local heating of the crystal lattice, that can be described as a collective polaron formed by a polariton condensate. These observations hint at the polariton fluid dynamics in conditions of extreme intensities and ultrafast times.

8.
Phys Rev Lett ; 113(22): 226401, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25494079

ABSTRACT

We report the experimental observation and control of space and time-resolved light-matter Rabi oscillations in a microcavity. Our setup precision and the system coherence are so high that coherent control can be implemented with amplification or switching off of the oscillations and even erasing of the polariton density by optical pulses. The data are reproduced by a quantum optical model with excellent accuracy, providing new insights on the key components that rule the polariton dynamics.

9.
Nat Commun ; 4: 1778, 2013.
Article in English | MEDLINE | ID: mdl-23653190

ABSTRACT

Although optical technology provides the best solution for the transmission of information, all-optical devices must satisfy several qualitative criteria to be used as logic elements. In particular, cascadability is difficult to obtain in optical systems, and it is assured only if the output of one stage is in the correct form to drive the input of the next stage. Exciton-polaritons, which are composite particles resulting from the strong coupling between excitons and photons, have recently demonstrated huge non-linearities and unique propagation properties. Here we show that polariton fluids moving in the plane of the microcavity can operate as input and output of an all-optical transistor, obtaining up to 19 times amplification and demonstrating the cascadability of the system. Moreover, the operation as an AND/OR gate is shown, validating the connectivity of multiple transistors in the microcavity plane and opening the way to the implementation of polariton integrated circuits.

10.
Phys Rev Lett ; 109(26): 266407, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23368594

ABSTRACT

We investigate the cross interactions in a two-component polariton quantum fluid coherently driven by two independent pumping lasers tuned at different energies and momenta. We show that both the hysteresis cycles and the on-off threshold of one polariton signal can be entirely controlled by a second polariton fluid. Furthermore, we study the ultrafast switching dynamics of a driven polariton state, demonstrating the ability to control the polariton population with an external laser pulse, in less than a few picoseconds.

11.
Phys Rev Lett ; 102(5): 056402, 2009 Feb 06.
Article in English | MEDLINE | ID: mdl-19257528

ABSTRACT

The excitation spectrum around the pump-only stationary state of a polariton optical parametric oscillator in semiconductor microcavities is investigated by time-resolved photoluminescence. The response to a weak pulsed perturbation in the vicinity of the idler mode is directly related to the lifetime of the elementary excitations. A dramatic increase of the lifetime is observed for a pump intensity approaching and exceeding the optical parametric oscillator threshold. The observations can be explained in terms of a critical slowing down of the dynamics upon approaching the threshold and the following appearance of a soft Goldstone mode in the spectrum.

12.
Nature ; 457(7227): 291-5, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19148095

ABSTRACT

Semiconductor microcavities offer unique systems in which to investigate the physics of weakly interacting bosons. Their elementary excitations, polaritons-mixtures of excitons and photons-can accumulate in macroscopically degenerate states to form various types of condensate in a wide range of experimental configurations, under either incoherent or coherent excitation. Condensates of polaritons have been put forward as candidates for superfluidity, and the formation of vortices as well as elementary excitations with linear dispersion are actively sought as evidence to support this. Here, using a coherent excitation triggered by a short optical pulse, we have created and set in motion a macroscopically degenerate state of polaritons that can be made to collide with a variety of defects present in the microcavity. Our experiments show striking manifestations of a coherent light-matter packet, travelling at high speed (of the order of one per cent of the speed of light) and displaying collective dynamics consistent with superfluidity, although one of a highly unusual character as it involves an out-of-equilibrium dissipative system. Our main results are the observation of a linear polariton dispersion accompanied by diffusionless motion; flow without resistance when crossing an obstacle; suppression of Rayleigh scattering; and splitting into two fluids when the size of the obstacle is comparable to the size of the wave packet. This work opens the way to the investigation of new phenomenology of out-of-equilibrium condensates.

13.
J Phys Condens Matter ; 19(29): 295204, 2007 Jul 25.
Article in English | MEDLINE | ID: mdl-21483056

ABSTRACT

Semiconductor microcavities offer an ideal scenario to study strong radiation-matter interactions. In this paper we review the temporal dynamics of polaritons in II-VI and III-V based microcavities under non-resonant excitation conditions. We present evidence of final-state stimulated scattering and discuss the spin-dependent emission, which exhibits a remarkably rich behaviour.

14.
Br J Surg ; 77(1): 53-6, 1990 Jan.
Article in English | MEDLINE | ID: mdl-2302514

ABSTRACT

The experience of the Istituto Nazionale Tumori of Milan of 143 patients who underwent extended surgery for cancer of the stomach from 1965 to 1980 is reviewed. They represent 16.3 per cent of the patients who underwent curative surgery. The operative mortality rate was 15.4 per cent but this significantly decreased in recent years to 8 per cent and the morbidity rate to 17.5 per cent. The overall 5-year survival rate was 19 per cent. Survival was analysed according to tumour penetration (pT) and nodal status (N). It was found that patients without tumour penetration of adjacent structures and nodal involvement (pT3N-) had a better 5-year survival rate (21 per cent) than patients with nodal involvement (pT3N+) (2 per cent). Patients with tumour penetration of adjacent structures and without nodal involvement (pT4N-) had a better 5-year survival rate (29 per cent) than patients with nodal involvement (pT4N+) (5 per cent). These differences were significant on log rank test (P less than 0.000001 and P less than 0.001 respectively) and suggest that nodal status is a stronger prognostic variable than pT level. The role of extended surgery is discussed from the viewpoint of the oncological surgeon who has to weigh up the difficulty of a preoperative diagnosis of tumour infiltration of adjacent structures (predictive positive value 0.39), with the operative mortality rate of at least 8 per cent and long-term results which are strongly affected by the nodal status.


Subject(s)
Stomach Neoplasms/surgery , Digestive System Neoplasms/secondary , Digestive System Neoplasms/surgery , Female , Gastrectomy , Humans , Italy/epidemiology , Lymphatic Metastasis , Male , Middle Aged , Splenic Neoplasms/secondary , Splenic Neoplasms/surgery , Stomach Neoplasms/mortality , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...