Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Lancet Infect Dis ; 24(4): 395-403, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38218194

ABSTRACT

BACKGROUND: More than six million people worldwide, particularly in vulnerable communities in Latin America, are infected with Trypanosoma cruzi, the causative agent of Chagas disease. Only a small portion have access to diagnosis and treatment. Both drugs used to treat this chronic, neglected infection, benznidazole and nifurtimox, were developed more than 50 years ago, and adverse drug reactions during treatment pose a major barrier, causing 20% of patients to discontinue therapy. Fexinidazole proved efficacious in an earlier, interrupted clinical trial, but the doses evaluated were not well tolerated. The present study evaluated fexinidazole at lower doses and for shorter treatment durations. METHODS: In this randomised, double-blind, phase 2 trial, we included adult patients (18-60 years old) with confirmed T cruzi infection by serology and PCR and without signs of organ involvement. We evaluated three regimens of fexinidazole-600 mg once daily for 10 days (6·0 g total dose), 1200 mg daily for 3 days (3·6 g), and 600 mg daily for 3 days followed by 1200 mg daily for 4 days (6·6 g)-and compared them with a historical placebo control group (n=47). The primary endpoint was sustained negative results by PCR at end of treatment and on each visit up to four months of follow-up. This study is registered with ClinicalTrials.gov, NCT03587766, and EudraCT, 2016-004905-15. FINDINGS: Between Oct 16, 2017, and Aug 7, 2018, we enrolled 45 patients (n=15 for each group), of whom 43 completed the study. Eight (19%) of 43 fexinidazole-treated patients reached the primary endpoint, compared with six (13%) of 46 in the historical control group. Mean parasite load decreased sharply following treatment but rebounded beginning 10 weeks after treatment. Five participants had seven grade 3 adverse events: carpal tunnel, sciatica, device infection, pneumonia, staphylococcal infection, and joint and device dislocation. Two participants discontinued treatment due to adverse events unrelated to fexinidazole. INTERPRETATION: The fexinidazole regimens in this study had an acceptable safety profile but did not prove effective against T cruzi infection. Development of fexinidazole monotherapy for treating T cruzi infection has been stopped. FUNDING: The Drugs for Neglected Diseases initiative.


Subject(s)
Chagas Disease , Nitroimidazoles , Trypanosoma cruzi , Adult , Humans , Adolescent , Young Adult , Middle Aged , Treatment Outcome , Chagas Disease/drug therapy , Nifurtimox/adverse effects , Double-Blind Method
2.
Acta Trop ; 250: 107092, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38065375

ABSTRACT

Leishmaniases are zoonotic diseases caused by protozoa of the genus Leishmania. In Bolivia, leishmaniasis occurs mainly in the cutaneous form (CL) followed by the mucosal or mucocutaneous form (ML or MCL), grouped as tegumentary leishmaniosis (TL), while cases of visceral leishmaniasis (VL) are rare. The cases of TL are routinely diagnosed by parasitological methods: Direct Parasitological Exam (DPE) and axenic culture, the latter being performed only by specialized laboratories. The aim of the present study was to optimize the parasitological diagnosis of TL in Bolivia, using two sampling methods. Samples from 117 patients with suspected TL, obtained by aspiration (n = 121) and scraping (n = 121) of the edge of the lesion were tested by: direct parasitological exam, culture in TSTB medium, and miniculture and microculture in Schneider's medium. A positive laboratory result by any of the four techniques evaluated using either of the two sampling methods was considered the gold standard. Of the 117 suspected patients included, TL was confirmed in 96 (82 %), corresponding 79 of the confirmed cases (82.3 %) to CL and 16 (16.7 %) to ML. Parasitological techniques specificity was 100 % and their analytical sensitivity was greater with scraping samples in TSTB culture (98 %). Scraping samples in TSTB and miniculture correlated well with the reference (Cohen's kappa coefficient=0.88) and showed good reliability (Cronbach's alpha coefficient ≥0.91). Microculture provided positive results earlier than the other culture methods (mean day 4.5). By day 14, 98 % of positive cultures had been detected. Scraping sampling and miniculture were associated with higher culture contamination (6 % and 17 %, respectively). Bacterial contamination predominated, regardless of the sampling and culture method, while filamentous fungi and mixed contamination were more frequently observed in cultures from scraping samples. In conclusion: (i) scraping samples proved more suitable for the diagnosis of TL as they increased analytical sensitivity, are less traumatic for the patient and are safer for laboratory personnel than aspirates; (ii) culture, mainly in TSBT medium, should be used for the diagnosis of TL due to its high sensitivity (doubling the number of cases diagnosed by DPE) and its low cost compared to other culture media.


Subject(s)
Leishmania , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Leishmaniasis , Humans , Bolivia , Reproducibility of Results , Leishmaniasis/diagnosis , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/parasitology
3.
Parasitology ; 151(2): 213-219, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38105582

ABSTRACT

In 2009, a large outbreak of leishmaniasis, associated with environmental changes, was declared near Madrid (Spain), in which Phlebotomus perniciosus was the vector, whereas the main reservoirs were hares and rabbits. Analysis of isolates from humans, vectors and leporids from the focus identified the Leishmania infantum ITS-Lombardi genotype. However, multilocus enzyme electrophoresis (MLEE), the reference technique for Leishmania typing, and sequencing of the hsp70 gene, a commonly used marker, were not performed. In the present study, 19 isolates from P. perniciosus (n = 11), hares (n = 5) and rabbits (n = 3) from the outbreak area, all characterized as ITS-Lombardi in previous studies, were analysed by MLEE and hsp70 sequencing. The hsp70 results confirmed that all the analysed strains are L. infantum. However, by MLEE, 4 different zymodemes of L. infantum were identified based on variable mobilities of the NP1 enzyme: MON-34 (NP1100, n = 11), MON-80 (NP1130, n = 6), MON-24 (NP1140, n = 1) and MON-331 (NP1150, n = 1). The relative frequency of these zymodemes does not correspond to their usual occurrence in Spain. Moreover, MON-34 and MON-80 were found in P. perniciosus, hares and rabbits for the first time. These findings continue to provide insights into the outbreak and call for further studies with a higher number of strains.


Subject(s)
Hares , Lagomorpha , Leishmania infantum , Humans , Animals , Rabbits , Spain/epidemiology , Leishmania infantum/genetics , Disease Outbreaks , HSP70 Heat-Shock Proteins/genetics
4.
PLoS Negl Trop Dis ; 17(7): e0011330, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37440480

ABSTRACT

BACKGROUND: Trypanosoma cruzi causes Chagas disease (CD), a potentially fatal disease characterized by cardiac disorders and digestive, neurological or mixed alterations. T. cruzi is transmitted to humans by the bite of triatomine vectors; both the parasite and disease are endemic in Latin America and the United States. In the last decades, population migration has changed the classic epidemiology of T. cruzi, contributing to its global spread to traditionally non-endemic countries. Screening is recommended for Latin American populations residing in non-endemic countries. METHODS: The present study analyzes the epidemiological characteristics of 2,820 Latin American individuals who attended the International Health Service (IHS) of the Hospital Clinic de Barcelona between 2002 and 2019. The initial assessment of organ damage among positive cases of T. cruzi infection was analyzed, including the results of electrocardiogram (ECG), echocardiogram, barium enema and esophagogram. RESULTS: Among all the screened individuals attending the clinic, 2,441 (86.6%) were born in Bolivia and 1,993 (70.7%) were female. Of individuals, 1,517 (81.5%) reported previous exposure to the vector, which is a strong risk factor associated with T. cruzi infection; 1,382 individuals were positive for T. cruzi infection. The first evaluation of individuals with confirmed T. cruzi infection, showed 148 (17.1%) individuals with Chagasic cardiomyopathy, the main diagnostic method being an ECG and the right bundle branch block (RBBB) for the most frequent disorder; 16 (10.8%) individuals had a normal ECG and were diagnosed of Chagasic cardiomyopathy by echocardiogram. CONCLUSIONS: We still observe many Latin American individuals who were at risk of T. cruzi infection in highly endemic areas in their countries of origin, and who have not been previously tested for T. cruzi infection. In fact, even in Spain, a country with one of the highest proportion of diagnosis of Latin American populations, T. cruzi infection remains underdiagnosed. The screening of Latin American populations presenting with a similar profile as reported here should be promoted. ECG is considered necessary to assess Chagasic cardiomyopathy in positive individuals, but echocardiograms should also be considered as a diagnostic approach given that it can detect cardiac abnormalities when the ECG is normal.


Subject(s)
Chagas Disease , Transients and Migrants , Trypanosoma cruzi , Humans , Female , Male , Latin America/epidemiology , Chagas Disease/diagnosis , Heart
5.
Microbiol Spectr ; 11(1): e0347722, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36633426

ABSTRACT

Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is a proteomic technique with proven efficiency in the identification of microorganisms, such as bacteria, fungi, and parasites. The present study aimed to evaluate the usefulness of MALDI-TOF MS for the characterization of Leishmania species circulating in Bolivia using hsp70 gene sequencing as a reference technique. 55 Leishmania strains that were isolated from patients with tegumentary leishmaniasis were analyzed. MALDI-TOF MS identified two species of the L. braziliensis complex (L. braziliensis, n = 26; L. braziliensis outlier, n = 18), one species of the L. guyanensis complex (L. guyanensis, n = 1), one species of the L. lainsoni complex (L. lainsoni, n = 2), and two species of the L. mexicana complex (L. amazonensis, n = 5; and L. garnhami, n = 3). All of the strains were correctly identified at the subgenus, genus, and complex level, but 10 of them (18%) were misidentified as other species within the same complex by the hsp70 gene sequencing, with 7 of these corresponding to possible hybrids. Thus, one L. braziliensis corresponded to L. peruviana, two L. braziliensis corresponded to L. braziliensis/L. peruviana possible hybrids, two L. amazonensis corresponded to L. mexicana, and three L. garnhami and two L. amazonensis corresponded to L. mexicana/L. amazonensis possible hybrids. Accordingly, MALDI-TOF MS could be used as an alternative to molecular techniques for the identification of Leishmania spp., as it is low cost, simple to apply, and able to quickly produce results. In Bolivia, its application would allow for the improvement of the management of patient follow-ups, the updating of the epidemiological data of the Leishmania species, and a contribution to the control of tegumentary leishmaniasis. IMPORTANCE The objective of the study was to evaluate the usefulness of MALDI-TOF MS for the characterization of Leishmania species circulating in Bolivia, in comparison with the sequencing of the hsp70 gene. In our study, all of the isolates could be identified, and no misidentifications were observed at the complex level. Although the equipment implies a high initial investment in our context, MALDI-TOF MS can be used in different areas of microbiology and significantly reduces the cost of testing. Once the parasite culture is obtained, the technique quickly yields information by accessing a free database that is available online. This would allow for the improvement of the management of patients and follow-ups, the updating of the epidemiological data of the species, and a contribution to the control of tegumentary leishmaniasis in Bolivia. Likewise, it can be used to determine a specific treatment to be given, according to the causal species of Leishmania, when there are protocols in this regard in the area.


Subject(s)
Leishmania , Leishmaniasis , Humans , Bolivia/epidemiology , Proteomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Lasers
6.
Microbiol Spectr ; 10(5): e0262822, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36190410

ABSTRACT

Trypanosoma cruzi infection has expanded globally through human migration. In Spain, the mother-to-child route is the mode of transmission contributing to autochthonous Chagas disease (CD); however, most people acquired the infection in their country of origin and were diagnosed in the chronic phase (imported chronic CD). In this context, we assessed the quantitative potential of the Loopamp Trypanosoma cruzi detection kit (Sat-TcLAMP) based on satellite DNA (Sat-DNA) to determine parasitemia levels compared to those detected by real-time quantitative PCRs (qPCRs) targeting Sat-DNA (Sat-qPCR) and kinetoplast DNA minicircles (kDNA-qPCR). This study included 173 specimens from 39 autochthonous congenital and 116 imported chronic CD cases diagnosed in Spain. kDNA-qPCR showed higher sensitivity than Sat-qPCR and Sat-TcLAMP. According to all quantitative approaches, parasitemia levels were significantly higher in congenital infection than in chronic CD (1 × 10-1 to 5 × 105 versus >1 × 10-1 to 6 × 103 parasite equivalents/mL, respectively [P < 0.001]). Sat-TcLAMP, Sat-qPCR, and kDNA-qPCR results were equivalent at high levels of parasitemia (P = 0.381). Discrepancies were significant for low levels of parasitemia and older individuals. Differences between Sat-TcLAMP and Sat-qPCR were not qualitatively significant, but estimations of parasitemia using Sat-TcLAMP were closer to those by kDNA-qPCR. Parasitemia changes were assessed in 6 individual cases in follow-up, in which trends showed similar patterns by all quantitative approaches. At high levels of parasitemia, Sat-TcLAMP, Sat-qPCR, and kDNA-qPCR worked similarly, but significant differences were found for the low levels characteristic of late chronic CD. A suitable harmonization strategy needs to be developed for low-level parasitemia detection using Sat-DNA- and kDNA-based tests. IMPORTANCE Currently, molecular equipment has been introduced into many health care centers, even in low-income countries. PCR, qPCR, and loop-mediated isothermal amplification (LAMP) are becoming more accessible for the diagnosis of neglected infectious diseases. Chagas disease (CD) is spreading worldwide, and in countries where the disease is not endemic, such as Spain, the parasite Trypanosoma cruzi is transmitted from mother to child (congenital CD). Here, we explore why LAMP, aimed at detecting T. cruzi parasite DNA, is a reliable option for the diagnosis of congenital CD and the early detection of reactivation in chronic infection. When the parasite load is high, LAMP is equivalent to any qPCR. In addition, the estimations of T. cruzi parasitemia in patients living in Spain, a country where the disease is not endemic, resemble natural evolution in areas of endemicity. If molecular tests are introduced into the diagnostic algorithm for congenital infection, early diagnosis and timely treatment would be accomplished, so the interruption of vertical transmission can be an achievable goal.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Female , Humans , DNA, Kinetoplast/genetics , Parasitemia/diagnosis , Parasitemia/epidemiology , Parasitemia/genetics , DNA, Satellite , Spain/epidemiology , DNA, Protozoan/genetics , DNA, Protozoan/analysis , Infectious Disease Transmission, Vertical , Chagas Disease/diagnosis , Chagas Disease/epidemiology , Chagas Disease/genetics , Trypanosoma cruzi/genetics , Real-Time Polymerase Chain Reaction/methods
7.
Clin Microbiol Rev ; 35(2): e0015221, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35239422

ABSTRACT

Population movements have turned Chagas disease (CD) into a global public health problem. Despite the successful implementation of subregional initiatives to control vectorial and transfusional Trypanosoma cruzi transmission in Latin American settings where the disease is endemic, congenital CD (cCD) remains a significant challenge. In countries where the disease is not endemic, vertical transmission plays a key role in CD expansion and is the main focus of its control. Although several health organizations provide general protocols for cCD control, its management in each geopolitical region depends on local authorities, which has resulted in a multitude of approaches. The aims of this review are to (i) describe the current global situation in CD management, with emphasis on congenital infection, and (ii) summarize the spectrum of available strategies, both official and unofficial, for cCD prevention and control in countries of endemicity and nonendemicity. From an economic point of view, the early detection and treatment of cCD are cost-effective. However, in countries where the disease is not endemic, national health policies for cCD control are nonexistent, and official regional protocols are scarce and restricted to Europe. Countries of endemicity have more protocols in place, but the implementation of diagnostic methods is hampered by economic constraints. Moreover, most protocols in both countries where the disease is endemic and those where it is not endemic have yet to incorporate recently developed technologies. The wide methodological diversity in cCD diagnostic algorithms reflects the lack of a consensus. This review may represent a first step toward the development of a common strategy, which will require the collaboration of health organizations, governments, and experts in the field.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Chagas Disease/diagnosis , Chagas Disease/drug therapy , Chagas Disease/epidemiology , Humans , Infectious Disease Transmission, Vertical/prevention & control , Internationality
8.
Transbound Emerg Dis ; 69(3): 1404-1418, 2022 May.
Article in English | MEDLINE | ID: mdl-33864706

ABSTRACT

Leishmaniasis is a transmissible disease caused by Leishmania protozoa. Spain is endemic for both visceral and cutaneous leishmaniasis, the autochthonous aetiological agent being Leishmania infantum. Around the world, the L. donovani complex is associated with visceral symptoms, while any species of the Leishmania or Viannia subgenera affecting human can produce tegumentary forms. In a context of growing numbers of imported cases, associated with globalisation, the aim of this study was to analyse the aetiological evolution of human tegumentary leishmaniasis in a region of Spain (Catalonia). Fifty-six Leishmania strains, isolated from 1981 to 2018, were analysed using MLEE, gene sequencing (hsp70, rpoIILS, fh and ITS2) and MALDI-TOF. The utility of these different analytical methods was compared. The results showed an increase in leishmaniasis over the two last decades, particularly imported cases, which represented 39% of all cases studied. Leishmania infantum, L. major, L. tropica, L. braziliensis, L. guyanensis and L. panamensis were identified. The combination of molecular and enzymatic methods allowed the identification of 29 different strain types (A to AC). Strain diversity was higher in L. (Viannia), whilst the different L. major types were relatable with geo-temporal data. Among the autochthonous cases, type C prevailed throughout the studied period (39%). Minor types generally appeared within a short time interval. While all the techniques provided identical identification at the species complex level, MALDI-TOF and rpoIILS or fh sequencing would be the most suitable identification tools for clinical practice, and the tandem hsp70-ITS2 could substitute MLEE in the epidemiological field.


Subject(s)
Leishmania infantum , Leishmaniasis, Cutaneous , Animals , Leishmania infantum/genetics , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/epidemiology , Leishmaniasis, Cutaneous/veterinary , Proteomics , Spain/epidemiology
9.
Transbound Emerg Dis ; 69(4): 2242-2255, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34232559

ABSTRACT

Leishmaniasis is caused by protozoans of the Leishmania genus, which includes more than 20 species capable of infecting humans worldwide. In the Americas, the most widespread specie is L. braziliensis, present in 18 countries including Bolivia. The taxonomic position of the L. braziliensis complex has been a subject of controversy, complicated further by the recent identification of a particular subpopulation named L. braziliensis atypical or outlier. The aim of this study was to carry out a systematic analysis of the L. braziliensis complex in Bolivia and to describe the associated clinical characteristics. Forty-one strains were analyzed by sequencing an amplified 1245 bp fragment of the hsp70 gene, which allowed its identification as: 24 (59%) L. braziliensis, 16 (39%) L. braziliensis outlier, and one (2%) L. peruviana. In a dendrogram constructed, L. braziliensis and L. peruviana are grouped in the same cluster, whilst L. braziliensis outlier appears in a separate branch. Sequence alignment allowed the identification of five non-polymorphic nucleotide positions (288, 297, 642, 993, and 1213) that discriminate L. braziliensis and L. peruviana from L. braziliensis outlier. Moreover, nucleotide positions 51 and 561 enable L. peruviana to be discriminated from the other two taxa. A greater diversity was observed in L. braziliensis outlier than in L. braziliensis-L. peruviana. The 41 strains came from 32 patients with tegumentary leishmaniasis, among which 22 patients (69%) presented cutaneous lesions (11 caused by L. braziliensis and 11 by L. braziliensis outlier) and 10 patients (31%) mucocutaneous lesions (eight caused by L. braziliensis, one by L. braziliensis outlier, and one by L. peruviana). Nine patients (28%) simultaneously provided two isolates, each from a separate lesion, and in each case the same genotype was identified in both. Treatment failure was observed in six patients infected with L. braziliensis and one patient with L. peruviana.


Subject(s)
Leishmania braziliensis , Leishmania , Leishmaniasis, Mucocutaneous , Leishmaniasis , Animals , Bolivia/epidemiology , Humans , Leishmania braziliensis/genetics , Leishmaniasis/veterinary , Leishmaniasis, Mucocutaneous/veterinary , Nucleotides
10.
J Clin Microbiol ; 59(5)2021 04 20.
Article in English | MEDLINE | ID: mdl-33692137

ABSTRACT

In Spain, PCR is the tool of choice for the diagnosis of congenital Chagas disease (CD) and serology for diagnosing chronic CD. A loop-mediated isothermal amplification test for Trypanosoma cruzi DNA detection showed good analytical performance and ease of use. We aimed to evaluate the performance of the Loopamp Trypanosoma cruzi detection kit (Eiken Chemical Co. Ltd., Japan) (Tcruzi-LAMP) for congenital and chronic CD diagnosis using well-characterized samples. We included samples from 39 congenital and 174 chronic CD cases and from 48 uninfected children born to infected mothers and 34 nonchagasic individuals. The sensitivity, specificity, and accuracy of Tcruzi-LAMP were estimated using standard case definitions for congenital CD (positive result by parasitological or PCR tests or serology after 9 months of age) and chronic CD (positive serology by at least two tests). The Tcruzi-LAMP results were read by visual examination and a real-time fluorimeter. For congenital CD, Tcruzi-LAMP sensitivity was 97% for both types of reading; specificity was 92% by visual examination and 94% by fluorimeter. For chronic CD, sensitivity was 47% and specificity 100%. The accuracy in congenital CD was >94% versus 56% in chronic CD. The agreement of Tcruzi-LAMP with PCR tests was better in congenital CD (kappa, 0.86 to 0.91) than in chronic CD (kappa, 0.67 to 0.83). The Loopamp Trypanosoma cruzi detection kit showed good performance for the diagnosis of congenital CD. Tcruzi-LAMP, like PCR, can be useful for the screening and early diagnosis of congenital infection.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Chagas Disease/diagnosis , Child , Humans , Japan , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Sensitivity and Specificity , Spain/epidemiology , Trypanosoma cruzi/genetics
11.
PLoS Negl Trop Dis ; 15(3): e0009223, 2021 03.
Article in English | MEDLINE | ID: mdl-33667232

ABSTRACT

BACKGROUND: Tegumentary leishmaniasis (TL) is a parasitic disease that can present a cutaneous or mucocutaneous clinical form (CL and MCL, respectively). The disease is caused by different Leishmania species and transmitted by phlebotomine sand flies. Bolivia has one of the highest incidences of the disease in South America and the diagnosis is done by parasitological techniques. Our aim was to describe the clinical and immunological characteristics of CL and MCL patients attending the leishmaniasis reference center in Cochabamba, Bolivia, in order to gain updated clinical and epidemiological information, to evaluate the diagnostic methods used and to identify biomarkers related to clinical disease and its evolution. METHODOLOGY/PRINCIPAL FINDINGS: The study was conducted from September 2014 to November 2015 and 135 patients with lesions compatible with CL or MCL were included. Epidemiological and clinical data were collected using a semi-structured questionnaire. Two parasitological diagnostic methods were used: Giemsa-stained smears and culture of lesion aspirates. Blood samples obtained from participants were used to measure the concentrations of different cytokines. 59.2% (80/135) were leishmaniasis confirmed cases (CL: 71.3%; MCL: 28.7%). Sixty percent of the confirmed cases were positive by smears and 90.6% were positive by culture. 53.8% were primo-infections. Eotaxin and monokine induced by IFN-γ presented higher serum concentrations in the MCL clinical presentation compared to CL cases and no-cases. None of the cytokines presented different concentrations between primo-infections and secondary infections due to treatment failure. CONCLUSIONS/SIGNIFICANCE: In Bolivia, parasitological diagnosis remains the reference standard in diagnosis of leishmaniasis because of its high specificity, whereas the sensitivity varies over a wide range leading to loss of cases. Until more accurate tools are implemented, all patients should be tested by both smears and culture of lesion aspirates to minimize the risk of false negatives. Our results showed higher concentrations of several cytokines in MCL compared to CL, but no differences were observed between CL and no-cases. In addition, none of the cytokines differed between primary and secondary infections. These results highlight the need of further research to identify biomarkers of susceptibility and disease progression, in addition to looking at the local cellular immune responses in the lesions.


Subject(s)
Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/pathology , Adolescent , Adult , Biomarkers/blood , Bolivia/epidemiology , Child , Cytokines/genetics , Cytokines/metabolism , Female , Gene Expression Regulation/immunology , Humans , Immunoassay/methods , Leishmaniasis, Cutaneous/epidemiology , Male , Middle Aged , Young Adult
12.
Int J Parasitol ; 50(13): 1079-1088, 2020 11.
Article in English | MEDLINE | ID: mdl-32889062

ABSTRACT

Among the 20 or so Leishmania spp. described as pathogenic for humans, those of the Leishmania donovani complex are the exclusive causative agents of systemic and fatal visceral leishmaniasis. Although well studied, the complex is taxonomically controversial, which hampers clinical and epidemiological research. In this work, we analysed 56 Leishmania strains previously identified as L. donovani, Leishmania archibaldi or Leishmania infantum, isolated from humans, dogs and sandfly vectors throughout their distribution area. The strains were submitted to biochemical and genetic analyses and the resulting data were compared for congruence. Our results show: i) a partial concordance between biochemical and genetic-based data, ii) very limited genetic variability within the L. donovani complex, iii) footprints of frequent genetic exchange along an east-west gradient, marked by a widespread diffusion of alleles across the geographical range, and iv) a large-scale geographical spreading of a few genotypes. From a taxonomic point of view, considering the absence of relevant terminology in existing classes, the L. donovani complex could be treated as a single entity.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Phlebotomus , Alleles , Animals , Dogs/parasitology , Genetic Variation , Genotype , Humans , Leishmania donovani/classification , Leishmania infantum , Leishmaniasis, Visceral/parasitology , Phlebotomus/parasitology
13.
Emerg Infect Dis ; 26(8): 1846-1851, 2020 08.
Article in English | MEDLINE | ID: mdl-32687028

ABSTRACT

Chagas disease is emerging in countries to which it is not endemic. Biomarkers for earlier therapeutic response assessment in patients with chronic Chagas disease are needed. We profiled plasma-derived extracellular vesicles from a heart transplant patient with chronic Chagas disease and showed the potential of this approach for discovering such biomarkers.


Subject(s)
Chagas Disease , Extracellular Vesicles , Heart Transplantation , Trypanosoma cruzi , Biomarkers , Chagas Disease/diagnosis , Heart Transplantation/adverse effects , Humans
14.
PLoS One ; 13(4): e0195738, 2018.
Article in English | MEDLINE | ID: mdl-29664973

ABSTRACT

BACKGROUND: Polymerase chain reaction (PCR) has become a useful tool for the diagnosis of Trypanosoma cruzi infection. The development of automated DNA extraction methodologies and PCR systems is an important step toward the standardization of protocols in routine diagnosis. To date, there are only two commercially available Real-Time PCR assays for the routine laboratory detection of T. cruzi DNA in clinical samples: TCRUZIDNA.CE (Diagnostic Bioprobes Srl) and RealCycler CHAG (Progenie Molecular). Our aim was to evaluate the RealCycler CHAG assay taking into account the whole process. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the usefulness of an automated DNA extraction system based on magnetic particles (EZ1 Virus Mini Kit v2.0, Qiagen) combined with a commercially available Real-Time PCR assay targeting satellite DNA (SatDNA) of T. cruzi (RealCycler CHAG), a methodology used for routine diagnosis in our hospital. It was compared with a well-known strategy combining a commercial DNA isolation kit based on silica columns (High Pure PCR Template Preparation Kit, Roche Diagnostics) with an in-house Real-Time PCR targeting SatDNA. The results of the two methodologies were in almost perfect agreement, indicating they can be used interchangeably. However, when variations in protocol factors were applied (sample treatment, extraction method and Real-Time PCR), the results were less convincing. A comprehensive fine-tuning of the whole procedure is the key to successful results. Guanidine EDTA-blood (GEB) samples are not suitable for DNA extraction based on magnetic particles due to inhibition, at least when samples are not processed immediately. CONCLUSIONS/SIGNIFICANCE: This is the first study to evaluate the RealCycler CHAG assay taking into account the overall process, including three variables (sample treatment, extraction method and Real-Time PCR). Our findings may contribute to the harmonization of protocols between laboratories and to a wider application of Real-Time PCR in molecular diagnostic laboratories associated with health centers.


Subject(s)
Chagas Disease/diagnosis , Chagas Disease/parasitology , Trypanosoma cruzi/genetics , DNA, Protozoan , Humans , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Sensitivity and Specificity
15.
Parasite ; 25: 3, 2018.
Article in English | MEDLINE | ID: mdl-29400647

ABSTRACT

An entomological survey was carried out in 2007 in two Pyrenean counties of Lleida province (north-eastern Spain), where cases of autochthonous canine leishmaniasis have been recently reported. Phlebotomus ariasi and P. perniciosus, vectors of Leishmania infantum in the Mediterranean area, were captured. The aim of the present study was to compare these phlebotomine populations with others captured in known leishmaniasis foci in Europe. Populations of these species were studied by analysing the polymorphism of seven enzymatic systems (HK, PGI, PGM, MDH, 6PGD, FUM and ACO) and compared with other specimens from endemic regions of France, Italy, Malta, Portugal and Spain captured in other campaigns, and also with previously published results. Phlebotomus ariasi was more polymorphic than P. perniciosus. Only the ACO locus had diagnostic alleles, but some other alleles show high characteristic frequencies for each species. The neighbour-joining trees separated two population groups in both species. On the basis of the isoenzyme study results, sand fly populations of the Pyrenean region in Lleida province are closely related to those of other nearby leishmaniasis endemic regions in France and Spain.


Subject(s)
Dog Diseases/transmission , Insect Vectors/enzymology , Isoenzymes/genetics , Leishmaniasis/veterinary , Phlebotomus/enzymology , Polymorphism, Genetic , Animals , Dog Diseases/epidemiology , Dog Diseases/parasitology , Dogs , Entomology/methods , Europe/epidemiology , France/epidemiology , Insect Vectors/classification , Insect Vectors/genetics , Insect Vectors/parasitology , Isoelectric Focusing/veterinary , Leishmania infantum/isolation & purification , Leishmaniasis/epidemiology , Leishmaniasis/parasitology , Leishmaniasis/transmission , Phlebotomus/classification , Phlebotomus/genetics , Phlebotomus/parasitology , Population , Psychodidae/parasitology , Spain/epidemiology , Surveys and Questionnaires
16.
J Clin Microbiol ; 55(5): 1396-1407, 2017 05.
Article in English | MEDLINE | ID: mdl-28202792

ABSTRACT

The immigration of Latin American women of childbearing age has spread the congenital transmission of Chagas disease to areas of nonendemicity, and the disease is now a worldwide problem. Some European health authorities have implemented screening programs to prevent vertical transmission, but the lack of a uniform protocol calls for the urgent establishment of a new strategy common to all laboratories. Our aims were to (i) analyze the trend of passive IgG antibodies in the newborn by means of five serological tests for the diagnosis and follow-up of congenital Trypanosoma cruzi infection, (ii) assess the utility of these techniques for diagnosing a congenital transmission, and (iii) propose a strategy for a prompt, efficient, and cost-effective diagnosis of T. cruzi infection. In noninfected newborns, a continuous decreasing trend of passive IgG antibodies was observed, but none of the serological assays seroreverted in any the infants before 12 months. From 12 months onwards, serological tests achieved negative results in all the samples analyzed, with the exception of the highly sensitive chemiluminescent microparticle immunoassay (CMIA). In contrast, in congenitally infected infants, the antibody decline was detected only after treatment initiation. In order to improve the diagnosis of congenital T. cruzi infection, we propose a new strategy involving fewer tests that allows significant cost savings. The protocol could start 1 month after birth with a parasitological test and/or a PCR. If negative, a serological test would be carried out at 9 months, which if positive, would be followed by another at around 12 months for confirmation.


Subject(s)
Antibodies, Protozoan/blood , Chagas Disease/diagnosis , Immunity, Maternally-Acquired/immunology , Immunoglobulin G/blood , Infectious Disease Transmission, Vertical , Trypanosoma cruzi/immunology , Antibodies, Protozoan/immunology , Chagas Disease/parasitology , Child, Preschool , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunoglobulin G/immunology , Infant , Infant, Newborn , Mass Screening/methods , Polymerase Chain Reaction/methods , Serologic Tests , Spain
17.
Parasitol Int ; 66(2): 83-88, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27940065

ABSTRACT

Trypanosoma cruzi, the causative agent of Chagas disease, is divided into six Discrete Typing Units (DTUs): TcI-TcVI. We aimed to identify T. cruzi DTUs in Latin-American migrants in the Barcelona area (Spain) and to assess different molecular typing approaches for the characterization of T. cruzi genotypes. Seventy-five peripheral blood samples were analyzed by two real-time PCR methods (qPCR) based on satellite DNA (SatDNA) and kinetoplastid DNA (kDNA). The 20 samples testing positive in both methods, all belonging to Bolivian individuals, were submitted to DTU characterization using two PCR-based flowcharts: multiplex qPCR using TaqMan probes (MTq-PCR), and conventional PCR. These samples were also studied by sequencing the SatDNA and classified as type I (TcI/III), type II (TcII/IV) and type I/II hybrid (TcV/VI). Ten out of the 20 samples gave positive results in the flowcharts: TcV (5 samples), TcII/V/VI (3) and mixed infections by TcV plus TcII (1) and TcV plus TcII/VI (1). By SatDNA sequencing, we classified the 20 samples, 19 as type I/II and one as type I. The most frequent DTU identified by both flowcharts, and suggested by SatDNA sequencing in the remaining samples with low parasitic loads, TcV, is common in Bolivia and predominant in peripheral blood. The mixed infection by TcV-TcII was detected for the first time simultaneously in Bolivian migrants. PCR-based flowcharts are very useful to characterize DTUs during acute infection. SatDNA sequence analysis cannot discriminate T. cruzi populations at the level of a single DTU but it enabled us to increase the number of characterized cases in chronically infected patients.


Subject(s)
Chagas Disease/ethnology , Chagas Disease/parasitology , DNA, Protozoan/genetics , Transients and Migrants , Trypanosoma cruzi/classification , Trypanosoma cruzi/genetics , Adolescent , Adult , Bolivia/epidemiology , Chagas Disease/blood , Chagas Disease/epidemiology , Child , Coinfection/epidemiology , Coinfection/parasitology , Female , Genetic Variation , Genotype , Humans , Infant, Newborn , Male , Middle Aged , Molecular Typing , Parasite Load , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Spain/epidemiology , Trypanosoma cruzi/isolation & purification
18.
J Clin Microbiol ; 54(6): 1566-1572, 2016 06.
Article in English | MEDLINE | ID: mdl-27053668

ABSTRACT

Chagas disease has spread to areas that are nonendemic for the disease with human migration. Since no single reference standard test is available, serological diagnosis of chronic Chagas disease requires at least two tests. New-generation techniques have significantly improved the accuracy of Chagas disease diagnosis by the use of a large mixture of recombinant antigens with different detection systems, such as chemiluminescence. The aim of the present study was to assess the overall accuracy of a new-generation kit, the Architect Chagas (cutoff, ≥1 sample relative light units/cutoff value [S/CO]), as a single technique for the diagnosis of chronic Chagas disease. The Architect Chagas showed a sensitivity of 100% (95% confidence interval [CI], 99.5 to 100%) and a specificity of 97.6% (95% CI, 95.2 to 99.9%). Five out of six false-positive serum samples were a consequence of cross-reactivity with Leishmania spp., and all of them achieved results of <5 S/CO. We propose the Architect Chagas as a single technique for screening in blood banks and for routine diagnosis in clinical laboratories. Only gray-zone and positive sera with a result of ≤6 S/CO would need to be confirmed by a second serological assay, thus avoiding false-positive sera and the problem of cross-reactivity with Leishmania species. The application of this proposal would result in important savings in the cost of Chagas disease diagnosis and therefore in the management and control of the disease.


Subject(s)
Chagas Disease/diagnosis , Reagent Kits, Diagnostic , Serologic Tests/methods , Adult , Chronic Disease , Cross Reactions , False Positive Reactions , Humans , Leishmania/immunology , Sensitivity and Specificity , Time Factors
19.
Acta Trop ; 152: 96-102, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26342793

ABSTRACT

Leishmaniasis is a vector-borne disease transmitted by phlebotomine sand flies. Information about blood meal preferences in sand flies is essential to understand the epidemiology of the disease to adopt control measures. In previous studies, a polymerase chain reaction (PCR) of 359bp fragment of the conserved gene cytochrome b (cyt b) and further sequencing were applied in the study of blood meal sources in sand flies collected in the area of a leishmaniasis outbreak in southwest Madrid, Spain, providing significant information about blood meal preferences in the focus. In this work, a PCR-restriction fragment length polymorphism (RFLP) targeting a fragment of 359bp of vertebrate cyt b gene was developed. Restriction endonucleases HaeIII and HinfI generated specific patterns consistent with the blood meal sources found in sand flies. The protocol has been validated with twenty six engorged females collected in the field with CDC traps. Blood meals from nine vertebrates were identified based on PCR-cyt b and sequencing-human, dog, cat, horse, hare, rabbit, sheep, goat and chicken - and mixed blood meals (sheep/human; sheep/goat) - and successfully distinguished by PCR-RFLP. Therefore, this approach is an efficient and reliable alternative method to be applied in entomological surveys.


Subject(s)
Cytochromes b/genetics , Leishmaniasis/transmission , Polymerase Chain Reaction/methods , Polymorphism, Restriction Fragment Length , Psychodidae/physiology , Animals , Base Sequence , Female , Humans , Molecular Sequence Data , Psychodidae/genetics
20.
Parasit Vectors ; 7: 421, 2014 Sep 04.
Article in English | MEDLINE | ID: mdl-25192589

ABSTRACT

BACKGROUND: Although the Mediterranean island of Majorca is an endemic area of leishmaniosis, there is a lack of up-to-date data on its sand fly fauna, the last report dating from 1989. The aim of the present study was to provide information on the current sand fly distribution, the potential environmental factors favoring the presence of Phlebotomus perniciosus and which areas are at risk of leishmaniosis. METHODS: In July 2008 sand fly captures were carried out in Majorca with sticky castor oil interception traps. The capture stations were distributed in 77 grids (5x5 km2) covering the entire island. A total of 1,882 sticky traps were set among 111 stations. The characteristics of the stations were recorded and maps were designed using ArcGIS 9.2 software. The statistical analysis was carried out using a bivariate and multivariate logistic regression model. RESULTS: The sand fly fauna of Majorca is composed of 4 species: Phlebotomus perniciosus, P sergenti, P. papatasi and Sergentomyia minuta. P. perniciosus, responsible for Leishmania infantum transmission, was captured throughout the island (frequency 69.4 %), from 6 to 772 m above sea level. Through logistic regression we estimated the probability of P. perniciosus presence at each sampling site as a function of environmental and meteorological factors. Although in the initial univariate analyses the probability of P. perniciosus presence appeared to be associated with a wide variety of factors, in the multivariate logistic regression model only altitude, settlement, aspect, drainage hole construction, adjacent flora and the proximity of a sheep farm were retained as positive predictors of the distribution of this species. CONCLUSIONS: P. perniciosus was present throughout the island, and thereby the risk of leishmaniosis transmission. The probability of finding P. perniciosus was higher at altitudes ranging from 51 to 150 m.a.s.l., with adjacent garrigue shrub vegetation, at the edge of or between settlements, and in proximity to a sheep farm.


Subject(s)
Leishmania infantum/physiology , Phlebotomus/physiology , Phlebotomus/parasitology , Animals , Environment , Logistic Models , Population Dynamics , Spain , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...