Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(1): 317-326, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33458483

ABSTRACT

Polyaromatic compounds are the major, widespread contaminants in the aquatic environment. However, the adverse impacts of these compounds on blood pathophysiology (hematological profiling and serum biochemical responses) are poorly understood. As a consequence, this study was intended to evaluate the toxic effects of naphthalene, one of the polycyclic aromatic hydrocarbons, on the blood pathophysiology of Anabas testudineus using multiple end-point biomarker approach. A. testudineus was exposed to short-term (1 and 5 d) and long-term (10, 15, and 21 d) naphthalene concentrations, that is, T1 (0.71 mg/L indicates 25% of LC50) and T2 (1.42 mg/L indicates 50% of LC50 value). The results disclosed significant decrease in red blood cells, hemoglobin (Hb), packed cell volume, and platelet levels, while other blood parameters, namely, white blood cells, percent lymphocyte, mean cell volume, mean corpuscular Hb, and mean corpuscular Hb concentration showed enhanced levels under naphthalene intoxication. Results were more detrimental under T2 concentration. Cholesterol, glucose, calcium, high-density lipoprotein, and low-density lipoprotein levels gradually increased throughout the different exposure periods under T1 and T2 concentrations, while the triglyceride level gradually decreased during exposure periods. Finally, integrated biomarker responses (IBR) analysis indicated that serum biochemical parameters are more powerful than hematological parameters for determining the naphthalene-induced fish health status. Additionally, the IBR study clearly identified that long-term (>5 d) exposure was more harmful than short-term (<5 d) naphthalene exposure. So, these responses may be derived as biomarkers for monitoring naphthalene pollution in an aquatic ecosystem.

2.
Environ Toxicol Pharmacol ; 80: 103490, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32911098

ABSTRACT

Anabas testudineus (Bloch) was exposed to 0.71 mg/L and 1.42 mg/L (25 and 50% of LC50 value respectively) naphthalene, a polycyclic aromatic hydrocarbon (PAH), for 21 days. Blood biochemical parameters and erythrocytic morphological alterations were assessed to describe the naphthalene toxicity. Biochemical analysis showed a significant increase in glutamic pyruvic transaminase, GPT (576.7 ± 11.79 and 608.9 ± 12.08 U/L, respectively) and alkaline phosphatase, ALP (12.9 ± 0.69 and 13.4 ±â€¯0.64 U/L, respectively) activities under two doses compared with control. Protein and albumin (ALB) content in blood decreased significantly, in comparison with control value in the tune of 22.67 ±â€¯1.04 and 23.97 ±â€¯1.24 g/dl, respectively and 10.7 ±â€¯0.79 and 11.1 ±â€¯0.67 g/dl, respectively. Erythrocytes showed varied symptomatic morphological changes under naphthalene exposure, which included severe denaturation, swelling in cells, appearance of sickle and tear drop cells, and cellular vacuolation. In particularly, the changes were more prominent under higher naphthalene exposure. Following the results, it has been able to establish that GPT, ALP, protein and ALB, and the morphological manifestations of erythrocytes would be good tools of biomarker in monitoring toxicological paradigm, especially to naphthalene exposure in aquatic bodies.


Subject(s)
Erythrocytes/drug effects , Fishes/blood , Naphthalenes/toxicity , Water Pollutants, Chemical/toxicity , Alanine Transaminase/blood , Alkaline Phosphatase/blood , Animals , Erythrocytes/pathology , Fish Proteins/blood , Serum Albumin/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...