Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Bull ; 244(1): 51-62, 2023 02.
Article in English | MEDLINE | ID: mdl-37167622

ABSTRACT

AbstractThe interstitial environment of marine sediments is a complex network of voids and pores that is inhabited by a diverse and abundant fauna. Animals living within these interstitial spaces show widespread functional adaptations to this environment and have developed many strategies for moving and navigating through small spaces. Interstitial annelids demonstrate a remarkable level of morphologic diversity, and some possess dexterous, filiform palps (tentacle-like appendages common across Annelida). The function(s) of these palps in interstitial spaces has not been closely examined, and we propose that they serve a sensory role in the navigation of interstitial spaces. We investigated the locomotory function of long, dexterous palps in three families of interstitial annelids to determine their role in interstitial navigation. We observed two species of protodrilids (Protodrilidae), Pharyngocirrus eroticus (Saccocirridae), and Protodorvillea recuperata (Dorvilleidae), as they moved through two transparent sand analogs: cyolite and glass beads. All four species of annelids consistently used their palps to probe the interstitial environment while locomoting, and the distance probed with their palps was greater than the distance traveled with their heads, indicating a sensory form of palp-based navigation. The functionality of palps as sensory organs in the interstitial environment raises interesting questions about interstitial navigation and how fauna without appendages map their surroundings. The discovery of this previously undocumented function was possible only through the direct observation of interstitial behavior and emphasizes the importance of developing new techniques to study these animals in more natural habitats.


Subject(s)
Annelida , Polychaeta , Animals , Polychaeta/anatomy & histology , Ecosystem , Adaptation, Physiological
2.
PeerJ ; 9: e11862, 2021.
Article in English | MEDLINE | ID: mdl-34447622

ABSTRACT

The benthic impact of aquaculture waste depends on the area and extent of waste accumulation on the sediment surface below and around the farm. In this study we investigated the effect of flow on biodeposit transport and initial deposition by calculating a rough aquaculture "footprint" around an oyster aquaculture farm in the Damariscotta River, ME. We also compared a site under the farm to a downstream "away" site calculated to be within the footprint of the farm. We found similar sediment biogeochemical fluxes, geochemical properties and macrofaunal communities at the site under the farm and the away site, as well as low organic enrichment at both sites, indicating that biodeposition in this environment likely does not have a major influence on the benthos. To predict accumulation of biodeposits, we measured sediment erodibility under a range of shear stresses and found slightly higher erosion rates at the farm than at the away site. A microalgal mat was observed at the sediment surface in many sediment cores. Partial failure of the microalgal mat was observed at high shear velocity, suggesting that the mat may fail and surface sediment erode at shear velocities comparable to or greater than those calculated fromin situ flow measurements. However, this study took place during neap tide, and it is likely that peak bottom velocities during spring tides are high enough to periodically "clear" under-farm sediment of recent deposits.

3.
J Acoust Soc Am ; 147(2): 812, 2020 02.
Article in English | MEDLINE | ID: mdl-32113278

ABSTRACT

The activities of infaunal organisms, including feeding, locomotion, and home building, alter sediment physical properties including grain size and sorting, porosity, bulk density, permeability, packing, tortuosity, and consolidation behavior. These activities are also known to affect the acoustic properties of marine sediments, although previous studies have demonstrated complicated relationships between infaunal activities and geoacoustic properties. To avoid difficulties associated with real animals, whose exact locations and activities are unknown, this work uses artificial burrows and simulates infaunal activities such as irrigation, compaction, and tube building in controlled laboratory experiments. The results show statistically significant changes in sound speed and attenuation over a frequency range of 100-400 kHz, corresponding to wavelengths on the order of the burrow diameter. The greatest effects were observed for tubes constructed of hard shells which increased the attenuation by ∼30 dB m-1 across the measurement band. These results highlight the importance of biogenic hard structures such as tubes on sound attenuation and suggest that organisms that create hard structures may be good targets for acoustic mapping of infaunal abundance and distribution.

SELECTION OF CITATIONS
SEARCH DETAIL
...