Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 11(2)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35205130

ABSTRACT

The present study aimed to develop reference values for bioelectrical phase angle in male and female athletes from different sports. Overall, 2224 subjects participated in this study [1658 males (age 26.2 ± 8.9 y) and 566 females (age 26.9 ± 6.6 y)]. Participants were categorized by their sport discipline and sorted into three different sport modalities: endurance, velocity/power, and team sports. Phase angle was directly measured using a foot-to-hand bioimpedance technology at a 50 kHz frequency during the in-season period. Reference percentiles (5th, 15th, 50th, 85th, and 95th) were calculated and stratified by sex, sport discipline and modality using an empirical Bayesian analysis. This method allows for the sharing of information between different groups, creating reference percentiles, even for sports disciplines with few observations. Phase angle differed (men: p < 0.001; women: p = 0.003) among the three sport modalities, where endurance athletes showed a lower value than the other groups (men: vs. velocity/power: p = 0.010, 95% CI = -0.43 to -0.04; vs. team sports: p < 0.001, 95% CI = -0.48 to -0.02; women: vs. velocity/power: p = 0.002, 95% CI = -0.59 to -0.10; vs. team sports: p = 0.015, 95% CI = -0.52 to -0.04). Male athletes showed a higher phase angle than female athletes within each sport modality (endurance: p < 0.01, 95% CI = 0.63 to 1.14; velocity/power: p < 0.01, 95% CI = 0.68 to 1.07; team sports: p < 0.01, 95% CI = 0.98 to 1.23). We derived phase angle reference percentiles for endurance, velocity/power, and team sports athletes. Additionally, we calculated sex-specific references for a total of 22 and 19 sport disciplines for male and female athletes, respectively. This study provides sex- and sport-specific percentiles for phase angle that can track body composition and performance-related parameters in athletes.

3.
J R Soc Interface ; 16(159): 20190417, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31662073

ABSTRACT

Fetal trajectories characterizing growth rates in utero have relied primarily on goodness of fit rather than mechanistic properties exhibited in utero. Here, we use a validated fetal-placental allometric scaling law and a first principles differential equations model of placental volume growth to generate biologically meaningful fetal-placental growth curves. The growth curves form the foundation for understanding healthy versus at-risk fetal growth and for identifying the timing of key events in utero.


Subject(s)
Fetal Development/physiology , Fetus/embryology , Models, Biological , Placenta/physiology , Female , Fetus/cytology , Humans , Placenta/cytology , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...