Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 577, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890560

ABSTRACT

BACKGROUND: Seed retention is the basic prerequisite for seed harvest. However, only little breeding progress has been achieved for this trait in the major forage grasses. The aim of this study was to evaluate the potential of plant genetic resources of the important fodder grasses Festuca pratensis Huds. and Lolium perenne L. as source for seed retention in the breeding process. Furthermore, the morphology of the abscission zone, where shattering occurs, was studied on the cell tissue level in different developmental stages of contrasting accessions. RESULTS: 150 and 286 accessions of Festuca pratensis and Lolium perenne were screened for seed retention, respectively. Contrasting accessions were selected to be tested in a second year. We found a great variation in seed retention in Festuca pratensis and Lolium perenne, ranging from 13 to 71% (average: 35%) and 12 to 94% (average: 49%), respectively, in the first year. Seed retention was generally lower in the second year. Cultivars were within the accessions with highest seed retention in Festuca pratensis, but had lower seed retention than ecotypes in Lolium perenne. Field-shattered seeds had a lower thousand grain weight than retained seeds. Cell layers of the abscission zone appeared already in early seed stages and were nested within each other in accessions with high seed retention, while there were two to three superimposed layers in accessions with low seed retention. CONCLUSIONS: Plant genetic resources of Lolium perenne might be a valuable source for breeding varieties with high seed retention. However, simultaneous selection for high seed weight is necessary for developing successful commercial cultivars.


Subject(s)
Festuca , Lolium , Phenotype , Seeds , Lolium/growth & development , Lolium/genetics , Lolium/anatomy & histology , Festuca/genetics , Festuca/growth & development , Festuca/anatomy & histology , Seeds/growth & development , Seeds/genetics , Seeds/anatomy & histology
2.
Tissue Eng Part C Methods ; 25(6): 367-379, 2019 06.
Article in English | MEDLINE | ID: mdl-31119986

ABSTRACT

IMPACT STATEMENT: Melt electrowriting is an AM technology that bridges the gap between solution electrospinning and melt microextrusion technologies. It can be applied to biomaterials and tissue engineering by making a spectrum of scaffolds with various laydown patterns at dimensions not previously studied. Using submicrometer X-ray tomography, a "fingerprint" of porosity for such scaffolds can be obtained and used as an important measure for quality control, to ensure that the scaffold fabricated is the one designed and allows the selection of specific scaffolds based on desired porosities.


Subject(s)
Electrochemistry/methods , Tissue Scaffolds/chemistry , X-Ray Microtomography , Equipment Design , Image Processing, Computer-Assisted , Porosity
3.
Rev Sci Instrum ; 88(12): 123702, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29289168

ABSTRACT

With increasing miniaturization in industry and medical technology, non-destructive testing techniques are an area of ever-increasing importance. In this framework, X-ray microscopy offers an efficient tool for the analysis, understanding, and quality assurance of microscopic samples, in particular as it allows reconstructing three-dimensional data sets of the whole sample's volume via computed tomography (CT). The following article describes a compact X-ray microscope in the hard X-ray regime around 9 keV, based on a highly brilliant liquid-metal-jet source. In comparison to commercially available instruments, it is a hybrid that works in two different modes. The first one is a micro-CT mode without optics, which uses a high-resolution detector to allow scans of samples in the millimeter range with a resolution of 1 µm. The second mode is a microscope, which contains an X-ray optical element to magnify the sample and allows resolving 150 nm features. Changing between the modes is possible without moving the sample. Thus, the instrument represents an important step towards establishing high-resolution laboratory-based multi-mode X-ray microscopy as a standard investigation method.

4.
Rev Sci Instrum ; 87(9): 093707, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27782562

ABSTRACT

We derive a propagator based formalism for optimizing phase contrast imaging in laboratory setups as well as in synchrotron setups. We confirm based on five different setups the well known existence of an optimum position for the sample in terms of phase contrast by measuring two types of fibers and evaluating the fringe contrast. Furthermore, we demonstrate for these setups a correlation of our formula and the fringe contrast. Hence, an estimate of this optimum position is given by our formalism which only depends on the source size, the detector blurring, and the total distance between source and detector.

5.
J Synchrotron Radiat ; 22(6): 1492-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26524314

ABSTRACT

Synchrotron real-time radioscopy and in situ microtomography are the only techniques providing direct visible information on a micrometre scale of local deformation in the implant-abutment connection (IAC) during and after cyclic loading. The microgap formation at the IAC has been subject to a number of studies as it has been proposed to be associated with long-term implant success. The next step in this scientific development is to focus on the in situ fatigue procedure of two-component dental implants. Therefore, an apparatus has been developed which is optimized for the in situ fatigue analysis of dental implants. This report demonstrates both the capability of in situ radioscopy and microtomography at the ID19 beamline for the study of cyclic deformation in dental implants. The first results show that it is possible to visualize fatigue loading of dental implants in real-time radioscopy in addition to the in situ fatigue tomography. For the latter, in situ microtomography is applied during the cyclic loading cycles in order to visualize the opening of the IAC microgap. These results concur with previous ex situ studies on similar systems. The setup allows for easily increasing the bending force, to simulate different chewing situations, and is, therefore, a versatile tool for examining the fatigue processes of dental implants and possibly other specimens.


Subject(s)
Dental Implant-Abutment Design/methods , Dental Implants , Imaging, Three-Dimensional/methods , Materials Testing/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, Optical/methods , Compressive Strength , Dental Stress Analysis , Stress, Mechanical
6.
Dent Mater ; 31(11): 1415-26, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26429505

ABSTRACT

OBJECTIVES: Based on the current lack of data and understanding of the wear behavior of dental two-piece implants, this study aims for evaluating the microgap formation and wear pattern of different implants in the course of cyclic loading. METHODS: Several implant systems with different conical implant-abutment interfaces were purchased. The implants were first evaluated using synchrotron X-ray high-resolution radiography (SRX) and scanning electron microscopy (SEM). The implant-abutment assemblies were then subjected to cyclic loading at 98N and their microgap was evaluated after 100,000, 200,000 and 1 million cycles using SRX, synchrotron micro-tomography (µCT). Wear mechanisms of the implant-abutment connection (IAC) after 200,000 cycles and 1 million cycles were further characterized using SEM. RESULTS: All implants exhibit a microgap between the implant and abutment prior to loading. The gap size increased with cyclic loading with its changes being significantly higher within the first 200,000 cycles. Wear was seen in all implants regardless of their interface design. The wear pattern comprised adhesive wear and fretting. Wear behavior changed when a different mounting medium was used (brass vs. polymer). SIGNIFICANCE: A micromotion of the abutment during cyclic loading can induce wear and wear particles in conical dental implant systems. This feature accompanied with the formation of a microgap at the IAC is highly relevant for the longevity of the implants.


Subject(s)
Dental Abutments , Dental Implant-Abutment Design , Dental Implants , Microscopy, Electron, Scanning , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...