Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 13(9)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34579011

ABSTRACT

INTRODUCTION: Proper nutrition during pregnancy is important to prevent nutritional imbalances that interfere with pregnancy. Micronutrients play critical roles in embryogenesis, fetal growth, and maternal health, as energy, protein, vitamin, and mineral needs can increase during pregnancy. Increased needs can be met by increasing the intake of dietary micronutrients. Severe micronutrient deficiency or excess during pregnancy can have negative effects on fetal growth (intrauterine growth retardation, low birth weight, or congenital malformations) and pregnancy development (pre-eclampsia or gestational diabetes). We investigate whether it is necessary to continue micronutrient supplementation during pregnancy to improve women's health in this stage and whether this supplementation could prevent and control pathologies associated with pregnancy. AIM: The present review aims to summarize evidence on the effects of nutritional deficiencies on maternal and newborn morbidity. METHODS: This aim is addressed by critically reviewing results from published studies on supplementation with different nutrients during pregnancy. For this, major scientific databases, scientific texts, and official webpages have been consulted. PubMed searches using the terms "pregnancy" OR "maternal-fetal health" AND "vitamins" OR "minerals" OR "supplementation" AND "requirement" OR "deficiency nutrients" were performed. RESULTS: There are accepted interventions during pregnancy, such as folic acid supplementation to prevent congenital neural tube defects, potassium iodide supplementation to correct neurodevelopment, and oral iron supplementation during the second half of pregnancy to reduce the risk of maternal anemia and iron deficiency. A number of micronutrients have also been associated with pre-eclampsia, gestational diabetes mellitus, and nausea and vomiting in pregnancy. In general, experimental studies are necessary to demonstrate the benefits of supplementation with different micronutrients and to adjust the recommended daily doses and the recommended periconceptional nutrition for mothers. CONCLUSIONS: Presently, there is evidence of the benefits of micronutrient supplementation in perinatal results, but indiscriminate use is discouraged due to the fact that the side effects of excessive doses are not known. Evidence supports the idea that micronutrient deficiencies negatively affect maternal health and the outcome of pregnancy. No single micronutrient is responsible for the adverse effects; thus, supplementing or correcting one deficiency will not be very effective while other deficiencies exist.


Subject(s)
Dietary Supplements , Malnutrition/prevention & control , Micronutrients/administration & dosage , Pregnancy Complications/prevention & control , Prenatal Care/methods , Female , Humans , Maternal Nutritional Physiological Phenomena , Pregnancy , Pregnancy Outcome
2.
Nat Commun ; 10(1): 4967, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31672972

ABSTRACT

To build or dissect complex pathways in bacteria and mammalian cells, it is often necessary to recur to at least two plasmids, for instance harboring orthogonal inducible promoters. Here we present SiMPl, a method based on rationally designed split enzymes and intein-mediated protein trans-splicing, allowing the selection of cells carrying two plasmids with a single antibiotic. We show that, compared to the traditional method based on two antibiotics, SiMPl increases the production of the antimicrobial non-ribosomal peptide indigoidine and the non-proteinogenic aromatic amino acid para-amino-L-phenylalanine from bacteria. Using a human T cell line, we employ SiMPl to obtain a highly pure population of cells double positive for the two chains of the T cell receptor, TCRα and TCRß, using a single antibiotic. SiMPl has profound implications for metabolic engineering and for constructing complex synthetic circuits in bacteria and mammalian cells.


Subject(s)
Anti-Bacterial Agents , Bacteria/enzymology , Drug Resistance, Bacterial , Inteins , Metabolic Engineering/methods , Plasmids/genetics , Protein Splicing , Receptors, Antigen, T-Cell, alpha-beta/metabolism , T-Lymphocytes/metabolism , Ampicillin Resistance , Cell Line , Chloramphenicol Resistance , Cinnamates , Humans , Hygromycin B/analogs & derivatives , Piperidones , Puromycin , Trans-Splicing
SELECTION OF CITATIONS
SEARCH DETAIL
...