Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 250: 123713, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35779361

ABSTRACT

The incidence of drug-facilitated sexual assault (DFSA) has dramatically increased in the last decades. Forensic analytical scientists continuously seek new methods and specimens to prove the incidence of intoxication for the judiciary system. Factors influencing sample selection include the ease of obtaining the samples and the window of detection of the drugs, among others. Both conventional (blood, urine) and non-conventional specimens (hair, nails, fluids) have been proposed as suitable in DFSA cases. Reported sample treatments include a variety of liquid-liquid and solid-phase extraction as well as dilute-and-shoot procedures and microextraction techniques. Regarding analysis, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) has emerged as the preferred confirmatory technique, due to its sensitivity, selectivity, and wide-scope applicability. In this review, we critically discuss the most common specimens and sample treatments/analysis procedures (related to LC-MS/MS) that have been reported during the last ten years. As a final goal, we intend to provide a critical overview and suggest analytical recommendations for the establishment of suitable analytical strategies in DFSA cases.


Subject(s)
Sex Offenses , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Forensic Medicine , Forensic Toxicology , Substance Abuse Detection/methods , Tandem Mass Spectrometry/methods
2.
Talanta ; 239: 123108, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34863061

ABSTRACT

Supramolecular solvents (SUPRASs) are gaining momentum in the multi-residue analysis of liquid samples thanks to the delimited hydrophilic and hydrophobic microenvironments in their nanostructures. In this work, SUPRASs with increased hydrophilicity were synthesized with the aim of enhancing the extractability of polar compounds. For this purpose, a double-headed amphiphile, 1,2-decanediol, was self-assembled in hydro-organic media in the presence and absence of sodium chloride. The SUPRASs formed, characterized by scanning electron microscopy, consisted of sponge droplets made up of a highly convoluted three-dimensional (3D) network of amphiphile. The network contained interconnected bilayers that were intersected by similarly interconnected aqueous channels with high and nearly constant water content (∼30%, w/w). Both the inherently open structure of the sponge morphology and the increased hydrophilic-hydrophobic balance of the amphiphile, provided highly hydrophilic microenvironments into the aggregates that rendered in increased recovery factors for 15 perfluorinated compounds (PFCs, C4-C18, log Pow values from 0.4 to 11.6) in natural waters. Extraction took 15 min without further clean-up or evaporation of extracts which were readily compatible with LC-MS/MS quantitation. Absolute recoveries for PFCs, at the level of a few ng L-1, were in the range 70-120%, except for perfluoropentanoic acid (40%) and perfluorobutane sulfonic acid (51%). Detection limits for PFCs in water were in the range 0.01-0.02 ng L-1, which allowed their determination in slightly polluted waters (0.07-2.33 ng L-1). This work proves that hydrophilicity in SUPRASs can be tailored through the amphiphile and the morphology of their aggregates, and that this characteristic improves compound extractability in multi-residue analysis.


Subject(s)
Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Chromatography, Liquid , Hydrophobic and Hydrophilic Interactions , Solvents
3.
Food Chem ; 326: 126987, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32416421

ABSTRACT

A single-step sample treatment, for the simultaneous extraction and clean-up for the determination of ionophore coccidiostats in EU legislated foodstuffs, is here proposed. The treatment is based on the combination of: (i) a supramolecular solvent with restricted access properties (SUPRAS-RAM), spontaneously formed by the addition of hexanol, water and THF to the sample; and (ii) dispersive solid phase extraction (dSPE). The SUPRAS-RAM extract was directly compatible with LC-MS/MS and no further re-extraction, evaporation or cleanup procedures were necessary. SUPRAS-RAM efficiently extracted the ionophores (recoveries in milk, eggs, fat, liver, kidney, and chicken and beef muscle were in the range 71-112%) and removed proteins and carbohydrates, whereas dSPE removed fats and other lipophilic compounds. The method was validated following the European Commission Decision 2002/657/EC. Detection limits (0.004-0.07 µg kg-1) were far below the maximum residue limits (1-150 µg kg-1). Method analytical and operational characteristics were suitable for routine determination of ionophores.


Subject(s)
Coccidiostats/analysis , Food Analysis/methods , Solvents/chemistry , Animals , Chromatography, High Pressure Liquid , Coccidiostats/isolation & purification , Eggs/analysis , Ionophores/analysis , Ionophores/isolation & purification , Limit of Detection , Meat/analysis , Milk/chemistry , Solid Phase Extraction , Tandem Mass Spectrometry
4.
Chemosphere ; 150: 461-464, 2016 May.
Article in English | MEDLINE | ID: mdl-26765313

ABSTRACT

Flame retardants (FRs) are used to delay ignition of materials such as furniture and electric and electronic instruments. Many FRs are persistent and end up in the environment. Environmental studies on flame retardants (FRs) took off in the late 1990s. Polybrominated diphenylethers (PBDEs) appeared to be bioaccumulative and were found in many organisms all over the world. When PBDEs were banned or their production voluntarily terminated, alternatives appeared on the market that often had similar properties or were of more concern due to their toxicity such as halogenated phosphorus-based FRs. Here we show that in spite of the ban on PBDEs more brominated FRs are being produced, an increasing number of other FRs is being applied and FR levels in our homes are much higher than in the outdoor environment. While nowadays we live in better isolated houses and sit in front of the computer or television, on flame retarded upholstery, we are at risk due to the toxic effects of a suite of FRs. The high exposure to these substances indoors calls for better risk assessments that include mixture effects.


Subject(s)
Air Pollution, Indoor/analysis , Dust/analysis , Flame Retardants/analysis , Food Contamination , Humans , Hydrocarbons, Brominated/analysis , Risk Assessment
5.
Chemosphere ; 116: 10-4, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24556545

ABSTRACT

Following the phase-out of polybrominated diphenyl ethers (PBDEs), organophosphorus flame retardants (PFRs) are increasingly used as alternative flame retardants in many products. Data on the presence of two alternative PFRs in consumer products, resorcinol bis (diphenylphosphate) (PBDPP or RDP) and bisphenol A bis (diphenylphosphate) (BPA-BDPP or BDP) is still scarce or non-existing. In this study we propose a simple extraction method and analysis by liquid chromatography-atmospheric pressure chemical ionization (APCI) coupled to a high resolution time-of-flight mass spectrometry (TOF) for plastic consumer products. Detection limits were low enough for trace quantitation in plastic or electronic samples (0.001% and 0.002% w/w for PBDPP and BPA-BDPP, respectively). The APCI source provided better sensitivity and matrix effects than the commonly used ESI source for the analysis of these PFRs. Both PBDPP and BPA-BDPP were detected in 7 of the 12 products purchased in 2012 (at 0.002-0.3% w/w for PBDPP and 0.02-0.18% w/w for BPA-BDPP) while only PBDPP was found in 4 of the 13 products purchased before 2006 (0.005-7.8% w/w). In newly purchased products, PBDPP, BPA-BDPP and triphenyl phosphate (TPHP) were the most frequently detected PFRs. These results support the recent findings of our research group about high concentration levels of PBDPP and BPA-BDPP up to 0.5-1 mg g(-1) in house dust collected on electronic equipment and highlights the need for further research on these two novel PFRs.


Subject(s)
Benzhydryl Compounds/analysis , Electrical Equipment and Supplies , Flame Retardants/analysis , Organophosphates/analysis , Plastics/analysis , Resorcinols/analysis , Chromatography, Liquid , Environmental Monitoring , Limit of Detection , Mass Spectrometry
6.
Anal Bioanal Chem ; 406(11): 2503-12, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24493336

ABSTRACT

In this study, we develop fast screening methods for flame retardants and plasticizers in products and waste based on direct probe (DP) atmospheric pressure photoionization (APPI) and atmospheric pressure chemical ionization (APCI) coupled to a high-resolution (HR) time-of-flight mass spectrometer. DP-APPI is reported for the first time in this study, and DP-APCI that has been scarcely exploited is optimized for comparison. DP-APPI was more selective than DP-APCI and also more sensitive for the most hydrophobic compounds. No sample treatment was necessary, and only a minimal amount of sample (few milligrams) was used for analysis that was performed within a few minutes. Both methods were applied to the analysis of plastic products, electronic waste, and car interiors. Polybrominated diphenylethers, new brominated flame retardants, and organophosphorus flame retardants were present in most of the samples. The combination of DP with HR mass spectra and data processing based on mass accuracy and isotopic patterns allowed the unambiguous identification of chemicals at low levels of about 0.025 % (w/w). Under untargeted screening, resorcinol bis(biphenylphosphate) and bisphenol A bis(bisphenylphosphate) were identified in many of the consumer products of which literature data are still very limited.


Subject(s)
Flame Retardants/analysis , Industrial Waste/analysis , Mass Spectrometry/methods , Plasticizers/chemistry , Consumer Product Safety , Mass Spectrometry/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...