Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
Protein Sci ; 32(9): e4747, 2023 09.
Article in English | MEDLINE | ID: mdl-37551561

ABSTRACT

ADP-glucose pyrophosphorylase is a key regulatory enzyme involved in starch and glycogen synthesis in plants and bacteria, respectively. It has been hypothesized that inter-subunit communications are important for the allosteric effect in this enzyme. However, no specific interactions have been identified as part of the regulatory signal. The enzyme from Agrobacterium tumefaciens is a homotetramer allosterically regulated by fructose 6-phosphate and pyruvate. Three pairs of distinct subunit-subunit interfaces are present. Here we focus on an interface that features two symmetrical interactions between Arg11 and Asp141 from one subunit with residues Asp141 and Arg11 of the neighbor subunit, respectively. Previously, scanning mutagenesis showed that a mutation at the Arg11 position disrupted the activation of the enzyme. Considering the distance of these residues from the allosteric and catalytic sites, we hypothesized that the interaction between Arg11 and Asp141 is critical for allosteric signaling rather than effector binding. To prove our hypothesis, we mutated those two sites (D141A, D141E, D141N, D141R, R11D, and R11K) and performed kinetic and binding analysis. Mutations that altered the charge affected the regulation the most. To prove that the interaction per se (rather than the presence of specific residues) is critical, we partially rescued the R11D protein by introducing a second mutation (R11D/D141R). This could not restore the activator effect on kcat , but it did rescue the effect on substrate affinity. Our results indicate the critical functional role of Arg11 and Asp141 to relay the allosteric signal in this subunit interface.


Subject(s)
Agrobacterium tumefaciens , Starch , Glucose-1-Phosphate Adenylyltransferase/genetics , Glucose-1-Phosphate Adenylyltransferase/chemistry , Glucose-1-Phosphate Adenylyltransferase/metabolism , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Mutation , Pyruvic Acid , Kinetics , Allosteric Regulation/genetics
2.
Protein Sci ; 32(8): e4725, 2023 08.
Article in English | MEDLINE | ID: mdl-37418656

ABSTRACT

An increased understanding of how the acceptor site in Gcn5-related N-acetyltransferase (GNAT) enzymes recognizes various substrates provides important clues for GNAT functional annotation and their use as chemical tools. In this study, we explored how the PA3944 enzyme from Pseudomonas aeruginosa recognizes three different acceptor substrates, including aspartame, NANMO, and polymyxin B, and identified acceptor residues that are critical for substrate specificity. To achieve this, we performed a series of molecular docking simulations and tested methods to identify acceptor substrate binding modes that are catalytically relevant. We found that traditional selection of best docking poses by lowest S scores did not reveal acceptor substrate binding modes that were generally close enough to the donor for productive acetylation. Instead, sorting poses based on distance between the acceptor amine nitrogen atom and donor carbonyl carbon atom placed these acceptor substrates near residues that contribute to substrate specificity and catalysis. To assess whether these residues are indeed contributors to substrate specificity, we mutated seven amino acid residues to alanine and determined their kinetic parameters. We identified several residues that improved the apparent affinity and catalytic efficiency of PA3944, especially for NANMO and/or polymyxin B. Additionally, one mutant (R106A) exhibited substrate inhibition toward NANMO, and we propose scenarios for the cause of this inhibition based on additional substrate docking studies with R106A. Ultimately, we propose that this residue is a key gatekeeper between the acceptor and donor sites by restricting and orienting the acceptor substrate within the acceptor site.


Subject(s)
Acetyltransferases , Polymyxin B , Acetyltransferases/genetics , Acetyltransferases/chemistry , Catalytic Domain , Molecular Docking Simulation , Substrate Specificity , Kinetics
3.
Protein Sci ; 31(7): e4376, 2022 07.
Article in English | MEDLINE | ID: mdl-35762722

ABSTRACT

The allosteric regulation of ADP-glucose pyrophosphorylase is critical for the biosynthesis of glycogen in bacteria and starch in plants. The enzyme from Agrobacterium tumefaciens is activated by fructose 6-phosphate (Fru6P) and pyruvate (Pyr). The Pyr site has been recently found, but the site where Fru6P binds has remained unknown. We hypothesize that a sulfate ion previously found in the crystal structure reveals a part of the regulatory site mimicking the presence of the phosphoryl moiety of the activator Fru6P. Ser72 interacts with this sulfate ion and, if the hypothesis is correct, Ser72 would affect the interaction with Fru6P and activation of the enzyme. Here, we report structural, binding, and kinetic analysis of Ser72 mutants of the A. tumefaciens ADP-glucose pyrophosphorylase. By X-ray crystallography, we found that when Ser72 was replaced by Asp or Glu side chain carboxylates protruded into the sulfate-binding pocket. They would present a strong steric and electrostatic hindrance to the phosphoryl moiety of Fru6P, while being remote from the Pyr site. In agreement, we found that Fru6P could not activate or bind to S72E or S72D mutants, whereas Pyr was still an effective activator. These mutants also blocked the binding of the inhibitor AMP. This could potentially have biotechnological importance in obtaining enzyme forms insensitive to inhibition. Other mutations in this position (Ala, Cys, and Trp) confirmed the importance of Ser72 in regulation. We propose that the ADP-glucose pyrophosphorylase from A. tumefaciens have two distinct sites for Fru6P and Pyr working in tandem to regulate glycogen biosynthesis.


Subject(s)
Agrobacterium tumefaciens , Serine , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Fructose , Glucose-1-Phosphate Adenylyltransferase/chemistry , Glucose-1-Phosphate Adenylyltransferase/genetics , Glucose-1-Phosphate Adenylyltransferase/metabolism , Glycogen/metabolism , Kinetics , Mutagenesis, Site-Directed , Phosphates , Serine/genetics , Sulfates
4.
Front Microbiol ; 13: 867384, 2022.
Article in English | MEDLINE | ID: mdl-35572620

ABSTRACT

We explored the ability of ADP-glucose pyrophosphorylase (ADP-Glc PPase) from different bacteria to use glucosamine (GlcN) metabolites as a substrate or allosteric effectors. The enzyme from the actinobacteria Kocuria rhizophila exhibited marked and distinctive sensitivity to allosteric activation by GlcN-6P when producing ADP-Glc from glucose-1-phosphate (Glc-1P) and ATP. This behavior is also seen in the enzyme from Rhodococcus spp., the only one known so far to portray this activation. GlcN-6P had a more modest effect on the enzyme from other Actinobacteria (Streptomyces coelicolor), Firmicutes (Ruminococcus albus), and Proteobacteria (Agrobacterium tumefaciens) groups. In addition, we studied the catalytic capacity of ADP-Glc PPases from the different sources using GlcN-1P as a substrate when assayed in the presence of their respective allosteric activators. In all cases, the catalytic efficiency of Glc-1P was 1-2 orders of magnitude higher than GlcN-1P, except for the unregulated heterotetrameric protein (GlgC/GgD) from Geobacillus stearothermophilus. The Glc-1P substrate preference is explained using a model of ADP-Glc PPase from A. tumefaciens based on the crystallographic structure of the enzyme from potato tuber. The substrate-binding domain localizes near the N-terminal of an α-helix, which has a partial positive charge, thus favoring the interaction with a hydroxyl rather than a charged primary amine group. Results support the scenario where the ability of ADP-Glc PPases to use GlcN-1P as an alternative occurred during evolution despite the enzyme being selected to use Glc-1P and ATP for α-glucans synthesis. As an associated consequence in such a process, certain bacteria could have improved their ability to metabolize GlcN. The work also provides insights in designing molecular tools for producing oligo and polysaccharides with amino moieties.

5.
Plant Cell Physiol ; 63(5): 658-670, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35243499

ABSTRACT

Sugar alcohols are major photosynthetic products in plant species from the Apiaceae and Plantaginaceae families. Mannose-6-phosphate reductase (Man6PRase) and aldose-6-phosphate reductase (Ald6PRase) are key enzymes for synthesizing mannitol and glucitol in celery (Apium graveolens) and peach (Prunus persica), respectively. In this work, we report the first crystal structures of dimeric plant aldo/keto reductases (AKRs), celery Man6PRase (solved in the presence of mannonic acid and NADP+) and peach Ald6PRase (obtained in the apo form). Both structures displayed the typical TIM barrel folding commonly observed in proteins from the AKR superfamily. Analysis of the Man6PRase holo form showed that residues putatively involved in the catalytic mechanism are located close to the nicotinamide ring of NADP+, where the hydride transfer to the sugar phosphate should take place. Additionally, we found that Lys48 is important for the binding of the sugar phosphate. Interestingly, the Man6PRase K48A mutant had a lower catalytic efficiency with mannose-6-phosphate but a higher catalytic efficiency with mannose than the wild type. Overall, our work sheds light on the structure-function relationships of important enzymes to synthesize sugar alcohols in plants.


Subject(s)
Phosphates , Sugar Alcohols , Alcohol Oxidoreductases/metabolism , Aldehyde Reductase/metabolism , Amino Acid Sequence , Humans , Mannosephosphates , NADP/metabolism , Plants/metabolism , Sugars
6.
Plant Mol Biol ; 108(4-5): 307-323, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35006475

ABSTRACT

KEY MESSAGE: This review outlines research performed in the last two decades on the structural, kinetic, regulatory and evolutionary aspects of ADP-glucose pyrophosphorylase, the regulatory enzyme for starch biosynthesis. ADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in the pathway of glycogen and starch synthesis in bacteria and plants, respectively. Plant ADP-Glc PPase is a heterotetramer allosterically regulated by metabolites and post-translational modifications. In this review, we focus on the three-dimensional structure of the plant enzyme, the amino acids that bind the regulatory molecules, and the regions involved in transmitting the allosteric signal to the catalytic site. We provide a model for the evolution of the small and large subunits, which produce heterotetramers with distinct catalytic and regulatory properties. Additionally, we review the various post-translational modifications observed in ADP-Glc PPases from different species and tissues. Finally, we discuss the subcellular localization of the enzyme found in grain endosperm from grasses, such as maize and rice. Overall, this work brings together research performed in the last two decades to better understand the multiple mechanisms involved in the regulation of ADP-Glc PPase. The rational modification of this enzyme could improve the yield and resilience of economically important crops, which is particularly important in the current scenario of climate change and food shortage.


Subject(s)
Evolution, Molecular , Glucose-1-Phosphate Adenylyltransferase/chemistry , Glucose-1-Phosphate Adenylyltransferase/physiology , Plants/enzymology , Allosteric Regulation , Glucose-1-Phosphate Adenylyltransferase/genetics , Models, Molecular , Protein Conformation , Starch/biosynthesis , Starch/chemistry
7.
Biochimie ; 192: 30-37, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34560201

ABSTRACT

Until recently, the cyanobacterial phylum only included oxygenic photosynthesizer members. The discovery of Melainabacteria as a group of supposed non-photosynthetic cyanobacteria asked to revisit such scenario. From metagenomic data, we were able to identify sequences encoding putative ADP-glucose pyrophosphorylases (ADP-GlcPPase) from free-living and intestinal Melainabacteria. The respective genes were de novo synthesized and over-expressed in Escherichia coli. The purified recombinant proteins from both Melainabacteria species were active as ADP-GlcPPases, exhibiting Vmax values of 2.3 (free-living) and 7.1 U/mg (intestinal). The enzymes showed similar S0.5 values (∼0.3 mM) for ATP, while the one from the intestinal source exhibited a 6-fold higher affinity toward glucose-1P. Both recombinant ADP-GlcPPases were sensitive to glucose-6P activation (A0.5 ∼0.3 mM) and Pi and ADP inhibition (I0.5 between 0.2 and 3 mM). Interestingly, the enzymes from Melainabacteria were insensitive to 3-phosphoglycerate, which is the principal activator of ADP-GlcPPases from photosynthetic cyanobacteria. As far as we know, this is the first biochemical characterization of an active enzyme from Melainabacteria. This work contributes to a better understanding of the evolution of allosteric regulation in the ADP-GlcPPase family, which is critical for synthesizing the main reserve polysaccharide in prokaryotes (glycogen) and plants (starch). In addition, our results offer further information to discussions regarding the phylogenetic position of Melainabacteria.


Subject(s)
Bacterial Proteins/chemistry , Cyanobacteria/enzymology , Glucose-1-Phosphate Adenylyltransferase/chemistry , Phylogeny , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cloning, Molecular , Cyanobacteria/genetics , Glucose-1-Phosphate Adenylyltransferase/genetics , Glucose-1-Phosphate Adenylyltransferase/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
8.
Biochem Biophys Res Commun ; 590: 1-6, 2022 01 29.
Article in English | MEDLINE | ID: mdl-34959191

ABSTRACT

The thermal shift assay (TSA) is a powerful tool used to detect molecular interactions between proteins and ligands. Using temperature as a physical denaturant and an extrinsic fluorescent dye, the TSA tracks protein unfolding. This method precisely determines the midpoint of the unfolding transition (Tm), which can shift upon the addition of a ligand. Though experimental protocols have been well developed, the thermal shift assay data traditionally yielded qualitative results. Quantitative methods for Kd determination relied either on empirical and inaccurate usage of Tm or on isothermal approaches, which do not take full advantage of the melting point precision provided by the TSA. We present a new analysis method based on a model that relies on the equilibrium system between the native and molten globule state of the protein using the van't Hoff equation. We propose the Kd can be determined by plotting Tm values versus the logarithm of ligand concentrations and fitting the data to an equation we derived. After testing this procedure with the monomeric maltose-binding protein and an allosterically regulated homotetrameric enzyme (ADP-glucose pyrophosphorylase), we observed that binding results correlated very well with previously established parameters. We demonstrate how this method could potentially offer a broad applicability to a wide range of protein classes and the ability to detect both active and allosteric site binding compounds.


Subject(s)
Proteins/metabolism , Temperature , Adenosine Diphosphate Glucose/metabolism , Escherichia coli/enzymology , Glucose-1-Phosphate Adenylyltransferase/metabolism , Humans , Kinetics , Ligands , Maltose/metabolism , Maltose-Binding Proteins/metabolism , Mutagenesis/genetics , Protein Unfolding , Trisaccharides/metabolism
9.
Front Mol Biosci ; 8: 646046, 2021.
Article in English | MEDLINE | ID: mdl-33912589

ABSTRACT

Enzymes in the Gcn5-related N-acetyltransferase (GNAT) superfamily are widespread and critically involved in multiple cellular processes ranging from antibiotic resistance to histone modification. While acetyl transfer is the most widely catalyzed reaction, recent studies have revealed that these enzymes are also capable of performing succinylation, condensation, decarboxylation, and methylcarbamoylation reactions. The canonical chemical mechanism attributed to GNATs is a general acid/base mechanism; however, mounting evidence has cast doubt on the applicability of this mechanism to all GNATs. This study shows that the Pseudomonas aeruginosa PA3944 enzyme uses a nucleophilic serine residue and a hybrid ping-pong mechanism for catalysis instead of a general acid/base mechanism. To simplify this enzyme's kinetic characterization, we synthesized a polymyxin B substrate analog and performed molecular docking experiments. We performed site-directed mutagenesis of key active site residues (S148 and E102) and determined the structure of the E102A mutant. We found that the serine residue is essential for catalysis toward the synthetic substrate analog and polymyxin B, but the glutamate residue is more likely important for substrate recognition or stabilization. Our results challenge the current paradigm of GNAT mechanisms and show that this common enzyme scaffold utilizes different active site residues to accomplish a diversity of catalytic reactions.

10.
Front Plant Sci ; 11: 1058, 2020.
Article in English | MEDLINE | ID: mdl-32754189

ABSTRACT

Starch is the dominant reserve polysaccharide accumulated in the seed of grasses (like wheat). It is the most common carbohydrate in the human diet and a material applied to the bioplastics and biofuels industry. Hence, the complete understanding of starch metabolism is critical to design rational strategies to improve its allocation in plant reserve tissues. ADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the key (regulated) step in the synthetic starch pathway. The enzyme comprises a small (S) and a large (L) subunit forming an S2L2 heterotetramer, which is allosterically regulated by orthophosphate, fructose-6P, and 3P-glycerate. ADP-Glc PPase was found in a phosphorylated state in extracts from wheat seeds. The amount of the phosphorylated protein increased along with the development of the seed and correlated with relative increases of the enzyme activity and starch content. Conversely, this post-translational modification was absent in seeds from Ricinus communis. In vitro, the recombinant ADP-Glc PPase from wheat endosperm was phosphorylated by wheat seed extracts as well as by recombinant Ca2+-dependent plant protein kinases. Further analysis showed that the preferential phosphorylation takes place on the L subunit. Results suggest that the ADP-Glc PPase is a phosphorylation target in seeds from grasses but not from oleaginous plants. Accompanying seed maturation and starch accumulation, a combined regulation of ADP-Glc PPase by metabolites and phosphorylation may provide an enzyme with stable levels of activity. Such concerted modulation would drive carbon skeletons to the synthesis of starch for its long-term storage, which later support seed germination.

11.
Biochimie ; 171-172: 23-30, 2020.
Article in English | MEDLINE | ID: mdl-32014504

ABSTRACT

Bacterial ADP-glucose pyrophosphorylases are allosterically regulated by metabolites that are key intermediates of central pathways in the respective microorganism. Pyruvate (Pyr) and fructose 6-phosphate (Fru6P) activate the enzyme from Agrobacterium tumefaciens by increasing Vmax about 10- and 20-fold, respectively. Here, we studied the combined effect of both metabolites on the enzyme activation. Our results support a model in which there is a synergistic binding of these two activators to two distinct sites and that each activator leads the enzyme to distinct active forms with different properties. In presence of both activators, Pyr had a catalytically dominant effect over Fru6P determining the active conformational state. By mutagenesis we obtained enzyme variants still sensitive to Pyr activation, but in which the allosteric signal by Fru6P was disrupted. This indicated that the activation mechanism for each effector was not the same. The ability for this enzyme to have more than one allosteric activator site, active forms, and allosteric signaling mechanisms is critical to expand the evolvability of its regulation. These synergistic interactions between allosteric activators may represent a feature in other allosteric enzymes.


Subject(s)
Agrobacterium tumefaciens/enzymology , Bacterial Proteins/metabolism , Fructosephosphates/metabolism , Glucose-1-Phosphate Adenylyltransferase/metabolism , Pyruvic Acid/metabolism , Allosteric Regulation , Allosteric Site , Enzyme Activation , Kinetics , Models, Molecular
12.
Front Mol Biosci ; 6: 89, 2019.
Article in English | MEDLINE | ID: mdl-31608288

ABSTRACT

The enzyme ADP-glucose pyrophosphorylase (ADP-Glc PPase) controls the biosynthesis of glycogen in bacteria and starch in plants. It is regulated by various activators in different organisms according to their metabolic characteristics. In Escherichia coli, the major allosteric activator is fructose 1,6-bisphosphate (FBP). Other potent activator analogs include 1,6-hexanediol bisphosphate (HBP) and pyridoxal 5'-phosphate (PLP). Recently, a crystal structure with FBP bound was reported (PDB ID: 5L6S). However, it is possible that the FBP site found is not directly responsible for the activation of the enzyme. We hypothesized FBP activates by binding one of its phosphate groups to another site ("P1") in which a sulfate molecule was observed. In the E. coli enzyme, Arg40, Arg52, and Arg386 are part of this "P1" pocket and tightly complex this sulfate, which is also present in the crystal structures of ADP-Glc PPases from Agrobacterium tumefaciens and Solanum tuberosum. To test this hypothesis, we modeled alternative binding conformations of FBP, HBP, and PLP into "P1." In addition, we performed a scanning mutagenesis of Arg residues near potential phosphate binding sites ("P1," "P2," "P3"). We found that Arg40 and Arg52 are essential for FBP and PLP binding and activation. In addition, mutation of Arg386 to Ala decreased the apparent affinity for the activators more than 35-fold. We propose that the activator binds at this "P1" pocket, as well as "P2." Arg40 and Arg52 are highly conserved residues and they may be a common feature to complex the phosphate moiety of different sugar phosphate activators in the ADP-Glc PPase family.

14.
J Biol Chem ; 294(4): 1338-1348, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30401744

ABSTRACT

The pathways for biosynthesis of glycogen in bacteria and starch in plants are evolutionarily and biochemically related. They are regulated primarily by ADP-glucose pyrophosphorylase, which evolved to satisfy metabolic requirements of a particular organism. Despite the importance of these two pathways, little is known about the mechanism that controls pyrophosphorylase activity or the location of its allosteric sites. Here, we report pyruvate-bound crystal structures of ADP-glucose pyrophosphorylase from the bacterium Agrobacterium tumefaciens, identifying a previously elusive activator site for the enzyme. We found that the tetrameric enzyme binds two molecules of pyruvate in a planar conformation. Each binding site is located in a crevice between the C-terminal domains of two subunits where they stack via a distinct ß-helix region. Pyruvate interacts with the side chain of Lys-43 and with the peptide backbone of Ser-328 and Gly-329 from both subunits. These structural insights led to the design of two variants with altered regulatory properties. In one variant (K43A), the allosteric effect was absent, whereas in the other (G329D), the introduced Asp mimicked the presence of pyruvate. The latter generated an enzyme that was preactivated and insensitive to further activation by pyruvate. Our study furnishes a deeper understanding of how glycogen biosynthesis is regulated in bacteria and the mechanism by which transgenic plants increased their starch production. These insights will facilitate rational approaches to enzyme engineering for starch production in crops of agricultural interest and will promote further study of allosteric signal transmission and molecular evolution in this important enzyme family.


Subject(s)
Agrobacterium tumefaciens/enzymology , Glucose-1-Phosphate Adenylyltransferase/chemistry , Glucose-1-Phosphate Adenylyltransferase/metabolism , Pyruvates/metabolism , Binding Sites , Glucose-1-Phosphate Adenylyltransferase/genetics , Glycogen/biosynthesis , Glycogen/chemistry , Models, Molecular , Molecular Structure
15.
Front Plant Sci ; 9: 1564, 2018.
Article in English | MEDLINE | ID: mdl-30425723

ABSTRACT

ADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step for the synthesis of glycogen in cyanobacteria and starch in green algae and plants. The enzyme from cyanobacteria is homotetrameric (α4), while that from green algae and plants is heterotetrameric (α2ß2). These ADP-Glc PPases are allosterically regulated by 3-phosphoglycerate (3PGA, activator) and inorganic orthophosphate (Pi, inhibitor). Previous studies on the cyanobacterial and plant enzymes showed that 3PGA binds to two highly conserved Lys residues located in the C-terminal domain. We observed that both Lys residues are present in the small (α) subunit of the Ostreococcus tauri enzyme; however, one of these Lys residues is replaced by Arg in the large (ß) subunit. In this work, we obtained the K443R and R466K mutants of the O. tauri small and large subunits, respectively, and co-expressed them together or with their corresponding wild type counterparts. Our results show that restoring the Lys residue in the large subunit enhanced 3PGA affinity, whereas introduction of an Arg residue in the small subunit reduced 3PGA affinity of the heterotetramers. Inhibition kinetics also showed that heterotetramers containing the K443R small subunit mutant were less sensitive to Pi inhibition, but only minor changes were observed for those containing the R466K large subunit mutant, suggesting a leading role of the small subunit for Pi inhibition of the heterotetramer. We conclude that, during evolution, the ADP-Glc PPase large subunit from green algae and plants acquired mutations in its regulatory site. The rationale for this could have been to accommodate sensitivity to particular metabolic needs of the cell or tissue.

16.
Front Plant Sci ; 9: 1498, 2018.
Article in English | MEDLINE | ID: mdl-30459778

ABSTRACT

The ADP-glucose pyrophosphorylase from wheat endosperm controls starch synthesis in seeds and has unique regulatory properties compared to others from this family. It comprises two types of subunits, but despite its importance little is known about their roles. Here, we synthesized de novo the wheat endosperm ADP-glucose pyrophosphorylase small (S) and large (L) subunit genes, heterologously expressed them in Escherichia coli, and kinetically characterized the recombinant proteins. To understand their distinct roles, we co-expressed them with well characterized subunits from the potato tuber enzyme to obtain hybrids with one S subunit from one source and an L subunit from the other. After kinetic analyses of these hybrids, we concluded that the unusual insensitivity to activation of the wheat endosperm enzyme is caused by a pre-activation of the L subunit. In addition, the heat stability and sensitivity to phosphate are given by the S subunit.

17.
J Bacteriol ; 200(17)2018 09 01.
Article in English | MEDLINE | ID: mdl-29941423

ABSTRACT

ADP-glucose pyrophosphorylase from Firmicutes is encoded by two genes (glgC and glgD) leading to a heterotetrameric protein structure, unlike those in other bacterial phyla. The enzymes from two groups of Firmicutes, Bacillales and Lactobacillales, present dissimilar kinetic and regulatory properties. Nevertheless, no ADP-glucose pyrophosphorylase from Clostridiales, the third group in Firmicutes, has been characterized. For this reason, we cloned the glgC and glgD genes from Ruminococcus albus Different quaternary forms of the enzyme (GlgC, GlgD, and GlgC/GlgD) were purified to homogeneity and their kinetic parameters were analyzed. We observed that GlgD is an inactive monomer when expressed alone but increased the catalytic efficiency of the heterotetramer (GlgC/GlgD) compared to the homotetramer (GlgC). The heterotetramer is regulated by fructose-1,6-bisphosphate, phosphoenolpyruvate, and NAD(P)H. The first characterization of the Bacillales enzyme suggested that heterotetrameric ADP-glucose pyrophosphorylases from Firmicutes were unregulated. Our results, together with data from Lactobacillales, indicate that heterotetrameric Firmicutes enzymes are mostly regulated. Thus, the ADP-glucose pyrophosphorylase from Bacillales seems to have distinctive insensitivity to regulation.IMPORTANCE The enzymes involved in glycogen synthesis from Firmicutes have been less characterized in comparison with other bacterial groups. We performed kinetic and regulatory characterization of the ADP-glucose pyrophosphorylase from Ruminococcus albus Our results showed that this protein that belongs to different groups from Firmicutes (Bacillales, Lactobacillales, and Clostridiales) presents dissimilar features. This study contributes to the understanding of how this critical enzyme for glycogen biosynthesis is regulated in the Firmicutes group, whereby we propose that these heterotetrameric enzymes, with the exception of Bacillales, are allosterically regulated. Our results provide a better understanding of the evolutionary relationship of this enzyme family in Firmicutes.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Glucose-1-Phosphate Adenylyltransferase/metabolism , Ruminococcus/enzymology , Ruminococcus/genetics , Bacterial Proteins/genetics , Cloning, Molecular , Genes, Bacterial , Glucose-1-Phosphate Adenylyltransferase/genetics , Glycogen/metabolism , Kinetics , Protein Structure, Quaternary
18.
PLoS One ; 13(4): e0196010, 2018.
Article in English | MEDLINE | ID: mdl-29698518

ABSTRACT

A new enzymatic assay for the bacterial enzyme succinyl-diaminopimelate desuccinylase (DapE, E.C. 3.5.1.18) is described. This assay employs N6-methyl-N2-succinyl-L,L-diaminopimelic acid (N6-methyl-L,L-SDAP) as the substrate with ninhydrin used to detect cleavage of the amide bond of the modified substrate, wherein N6-methylation enables selective detection of the primary amine enzymatic product. Molecular modeling supported preparation of the mono-N6-methylated-L,L-SDAP as an alternate substrate for the assay, given binding in the active site of DapE predicted to be comparable to the endogenous substrate. The alternate substrate for the assay, N6-methyl-L,L-SDAP, was synthesized from the tert-butyl ester of Boc-L-glutamic acid employing a Horner-Wadsworth-Emmons olefination followed by an enantioselective reduction employing Rh(I)(COD)(S,S)-Et-DuPHOS as the chiral catalyst. Validation of the new ninhydrin assay was demonstrated with known inhibitors of DapE from Haemophilus influenza (HiDapE) including captopril (IC50 = 3.4 [± 0.2] µM, 3-mercaptobenzoic acid (IC50 = 21.8 [±2.2] µM, phenylboronic acid (IC50 = 316 [± 23.6] µM, and 2-thiopheneboronic acid (IC50 = 111 [± 16] µM. Based on these data, this assay is simple and robust, and should be amenable to high-throughput screening, which is an important step forward as it opens the door to medicinal chemistry efforts toward the discovery of DapE inhibitors that can function as a new class of antibiotics.


Subject(s)
Amidohydrolases/metabolism , Anti-Bacterial Agents/metabolism , Bacterial Proteins/metabolism , Enzyme Assays , Spectrophotometry , Amidohydrolases/genetics , Anti-Bacterial Agents/chemistry , Bacterial Proteins/genetics , Binding Sites , Catalysis , Catalytic Domain , Coordination Complexes/chemistry , Diaminopimelic Acid/chemical synthesis , Diaminopimelic Acid/chemistry , Diaminopimelic Acid/metabolism , Haemophilus influenzae/enzymology , Kinetics , Molecular Docking Simulation , Ninhydrin/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Rhodium/chemistry , Stereoisomerism , Substrate Specificity
19.
J Exp Bot ; 68(13): 3331-3337, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28859372

ABSTRACT

Nucleoside diphosphate sugars (NDP-sugars) are the substrates for biosynthesis of oligo- and polysaccharides, such as starch and cellulose, and are also required for biosynthesis of nucleotides, ascorbic acid, several cofactors, glycoproteins and many secondary metabolites. A controversial study that questions the generally accepted pathway of ADP-glucose and starch synthesis in plants is based, in part, on claims that NDP-sugars are unstable at alkaline pH in the presence of Mg2+ and that this instability can lead to unreliable results from in vitro assays of enzyme activities. If substantiated, this claim would have far-reaching implications for many published studies that report on the activities of NDP-sugar metabolizing enzymes. To resolve this controversy, we investigated the stability of UDP- and ADP-glucose using biophysical, namely nuclear magnetic resonance (NMR), and highly specific enzymatic methods. Results obtained with both techniques indicate that NDP-sugars are not as unstable as previously suggested. Moreover, their calculated in vitro half-lives are significantly higher than estimates of their in planta turnover times. This indicates that the physico-chemical stability of NDP-sugars has little impact on their concentrations in vivo and that NDP-sugar levels are determined primarily by the relative rates of enzymatic synthesis and consumption. Our results refute one of the main arguments for the controversial pathway of starch synthesis from imported ADP-glucose produced by sucrose synthase in the cytosol.


Subject(s)
Carbohydrate Metabolism , Nucleoside Diphosphate Sugars/metabolism , Plants/metabolism , Hydrogen-Ion Concentration
20.
Front Chem ; 5: 41, 2017.
Article in English | MEDLINE | ID: mdl-28674689

ABSTRACT

The substrate specificity of enzymes is crucial to control the fate of metabolites to different pathways. However, there is growing evidence that many enzymes can catalyze alternative reactions. This promiscuous behavior has important implications in protein evolution and the acquisition of new functions. The question is how the undesirable outcomes of in vivo promiscuity can be prevented. ADP-glucose pyrophosphorylase from Escherichia coli is an example of an enzyme that needs to select the correct substrate from a broad spectrum of alternatives. This selection will guide the flow of carbohydrate metabolism toward the synthesis of reserve polysaccharides. Here, we show that the allosteric activator fructose-1,6-bisphosphate plays a role in such selection by increasing the catalytic efficiency of the enzyme toward the use of ATP rather than other nucleotides. In the presence of fructose-1,6-bisphosphate, the kcat/S0.5 for ATP was near ~600-fold higher that other nucleotides, whereas in the absence of activator was only ~3-fold higher. We propose that the allosteric regulation of certain enzymes is an evolutionary mechanism of adaptation for the selection of specific substrates.

SELECTION OF CITATIONS
SEARCH DETAIL
...