Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 9: 1541, 2018.
Article in English | MEDLINE | ID: mdl-30410499

ABSTRACT

Starch is the major energy storage carbohydrate in photosynthetic eukaryotes. Several enzymes are involved in building highly organized semi-crystalline starch granules, including starch-synthase III (SSIII), which is widely conserved in photosynthetic organisms. This enzyme catalyzes the extension of the α-1,4 glucan chain and plays a regulatory role in the synthesis of starch. Interestingly, unlike most plants, the unicellular green alga Ostreococcus tauri has three SSIII isoforms. In the present study, we describe the structure and function of OsttaSSIII-B, which has a similar modular organization to SSIII in higher plants, comprising three putative starch-binding domains (SBDs) at the N-terminal region and a C-terminal catalytic domain (CD). Purified recombinant OsttaSSIII-B displayed a high affinity toward branched polysaccharides such as glycogen and amylopectin, and to ADP-glucose. Lower catalytic activity was detected for the CD lacking the associated SBDs, suggesting that they are necessary for enzyme function. Moreover, analysis of enzyme kinetic and polysaccharide-binding parameters of site-directed mutants with modified conserved aromatic amino acid residues W122, Y124, F138, Y147, W279, and W304, belonging to the SBDs, revealed their importance for polysaccharide binding and SS activity. Our results suggest that OT_ostta13g01200 encodes a functional SSIII comprising three SBD domains that are critical for enzyme function.

2.
J Biol Chem ; 281(52): 40473-84, 2006 Dec 29.
Article in English | MEDLINE | ID: mdl-17079236

ABSTRACT

ADP-Glc pyrophosphorylase (PPase), a key regulatory enzyme in the biosynthetic pathway of starch and bacterial glycogen, catalyzes the synthesis of ADP-Glc from Glc-1-P and ATP. A homology model of the three-dimensional structure of the Escherichia coli enzyme complexed with ADP-Glc has been generated to study the substrate-binding site in detail. A set of amino acids in the model has been identified to be in close proximity to the glucose moiety of the ADP-Glc ligand. The role of these amino acids (Glu(194), Ser(212), Tyr(216), Asp(239), Phe(240), Trp(274), and Asp(276)) was studied by site-directed mutagenesis through the characterization of the kinetic properties and thermal stability of the designed mutants. All purified alanine mutants had 1 or 2 orders of magnitude lower apparent affinity for Glc-1-P compared with the wild type, indicating that the selected set of amino acids plays an important role in their interaction with the substrate. These amino acids, which are conserved within the ADP-Glc PPase family, were replaced with other residues to investigate the effect of size, hydrophobicity, polarity, aromaticity, or charge on the affinity for Glc-1-P. In this study, the architecture of the Glc-1-P-binding site is characterized. The model overlaps with the Glc-1-P site of other PPases such as Pseudomonas aeruginosa dTDP-Glc PPase and Salmonella typhi CDP-Glc PPase. Therefore, the data reported here may have implications for other members of the nucleotide-diphosphoglucose PPase family.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Glucose-1-Phosphate Adenylyltransferase/chemistry , Glucose-1-Phosphate Adenylyltransferase/metabolism , Glucosephosphates/chemistry , Glucosephosphates/metabolism , Amino Acid Sequence , Escherichia coli Proteins/genetics , Glucose-1-Phosphate Adenylyltransferase/genetics , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...