Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Curr Opin Plant Biol ; 80: 102547, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38749206

ABSTRACT

Plants interact with each other via a multitude of processes among which belowground communication facilitated by specialized metabolites plays an important but overlooked role. Until now, the exact targets, modes of action, and resulting phenotypes that these metabolites induce in neighboring plants have remained largely unknown. Moreover, positive interactions driven by the release of root exudates are prevalent in both natural field conditions and controlled laboratory environments. In particular, intraspecific positive interactions suggest a genotypic recognition mechanism in addition to non-self perception in plant roots. This review concentrates on recent discoveries regarding how plants interact with one another through belowground signals in intra- and interspecific mixtures. Furthermore, we elaborate on how an enhanced understanding of these interactions can propel the field of agroecology forward.


Subject(s)
Plant Roots , Plant Roots/metabolism , Plants/metabolism
2.
Plant Methods ; 20(1): 18, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38297386

ABSTRACT

BACKGROUND: Investigations on plant-pathogen interactions require quantitative, accurate, and rapid phenotyping of crop diseases. However, visual assessment of disease symptoms is preferred over available numerical tools due to transferability challenges. These assessments are laborious, time-consuming, require expertise, and are rater dependent. More recently, deep learning has produced interesting results for evaluating plant diseases. Nevertheless, it has yet to be used to quantify the severity of Septoria tritici blotch (STB) caused by Zymoseptoria tritici-a frequently occurring and damaging disease on wheat crops. RESULTS: We developed an image analysis script in Python, called SeptoSympto. This script uses deep learning models based on the U-Net and YOLO architectures to quantify necrosis and pycnidia on detached, flattened and scanned leaves of wheat seedlings. Datasets of different sizes (containing 50, 100, 200, and 300 leaves) were annotated to train Convolutional Neural Networks models. Five different datasets were tested to develop a robust tool for the accurate analysis of STB symptoms and facilitate its transferability. The results show that (i) the amount of annotated data does not influence the performances of models, (ii) the outputs of SeptoSympto are highly correlated with those of the experts, with a similar magnitude to the correlations between experts, and (iii) the accuracy of SeptoSympto allows precise and rapid quantification of necrosis and pycnidia on both durum and bread wheat leaves inoculated with different strains of the pathogen, scanned with different scanners and grown under different conditions. CONCLUSIONS: SeptoSympto takes the same amount of time as a visual assessment to evaluate STB symptoms. However, unlike visual assessments, it allows for data to be stored and evaluated by experts and non-experts in a more accurate and unbiased manner. The methods used in SeptoSympto make it a transferable, highly accurate, computationally inexpensive, easy-to-use, and adaptable tool. This study demonstrates the potential of using deep learning to assess complex plant disease symptoms such as STB.

4.
PLoS Biol ; 21(9): e3002287, 2023 09.
Article in English | MEDLINE | ID: mdl-37699017

ABSTRACT

Mixing crop cultivars has long been considered as a way to control epidemics at the field level and is experiencing a revival of interest in agriculture. Yet, the ability of mixing to control pests is highly variable and often unpredictable in the field. Beyond classical diversity effects such as dispersal barrier generated by genotypic diversity, several understudied processes are involved. Among them is the recently discovered neighbor-modulated susceptibility (NMS), which depicts the phenomenon that susceptibility in a given plant is affected by the presence of another healthy neighboring plant. Despite the putative tremendous importance of NMS for crop science, its occurrence and quantitative contribution to modulating susceptibility in cultivated species remains unknown. Here, in both rice and wheat inoculated in greenhouse conditions with foliar fungal pathogens considered as major threats, using more than 200 pairs of intraspecific genotype mixtures, we experimentally demonstrate the occurrence of NMS in 11% of the mixtures grown in experimental conditions that precluded any epidemics. Thus, the susceptibility of these 2 major crops results from indirect effects originating from neighboring plants. Quite remarkably, the levels of susceptibility modulated by plant-plant interactions can reach those conferred by intrinsic basal immunity. These findings open new avenues to develop more sustainable agricultural practices by engineering less susceptible crop mixtures thanks to emergent but now predictable properties of mixtures.


Subject(s)
Oryza , Oryza/genetics , Triticum/genetics , Disease Susceptibility , Crops, Agricultural , Agriculture
5.
J Exp Bot ; 74(10): 3094-3103, 2023 05 19.
Article in English | MEDLINE | ID: mdl-36840921

ABSTRACT

Plant ecologists and molecular biologists have long considered the hypothesis of a trade-off between plant growth and defence separately. In particular, how genes thought to control the growth-defence trade-off at the molecular level relate to trait-based frameworks in functional ecology, such as the slow-fast plant economics spectrum, is unknown. We grew 49 phenotypically diverse rice genotypes in pots under optimal conditions and measured growth-related functional traits and the constitutive expression of 11 genes involved in plant defence. We also quantified the concentration of silicon (Si) in leaves to estimate silica-based defences. Rice genotypes were aligned along a slow-fast continuum, with slow-growing, late-flowering genotypes versus fast-growing, early-flowering genotypes. Leaf dry matter content and leaf Si concentrations were not aligned with this axis and negatively correlated with each other. Live-fast genotypes exhibited greater expression of OsNPR1, a regulator of the salicylic acid pathway that promotes plant defence while suppressing plant growth. These genotypes also exhibited greater expression of SPL7 and GH3.2, which are also involved in both stress resistance and growth. Our results do not support the hypothesis of a growth-defence trade-off when leaf Si and leaf dry matter content are considered, but they do when hormonal pathway genes are considered. We demonstrate the benefits of combining ecological and molecular approaches to elucidate the growth-defence trade-off, opening new avenues for plant breeding and crop science.


Subject(s)
Oryza , Genotype , Oryza/genetics , Plant Breeding , Plant Development , Plant Leaves/metabolism , Plants
6.
New Phytol ; 238(2): 835-844, 2023 04.
Article in English | MEDLINE | ID: mdl-36710512

ABSTRACT

Reports indicate that intraspecific neighbours alter the physiology of focal plants, and with a few exceptions, their molecular responses to neighbours are unknown. Recently, changes in susceptibility to pathogen resulting from such interactions were demonstrated, a phenomenon called neighbour-modulated susceptibility (NMS). However, the genetics of NMS and the associated molecular responses are largely unexplored. Here, we analysed in rice the modification of biomass and susceptibility to the blast fungus pathogen in the Kitaake focal genotype in the presence of 280 different neighbours. Using genome-wide association studies, we identified the loci in the neighbour that determine the response in Kitaake. Using a targeted transcriptomic approach, we characterized the molecular responses in focal plants co-cultivated with various neighbours inducing a reduction in susceptibility. Our study demonstrates that NMS is controlled by one major locus in the rice genome of its neighbour. Furthermore, we show that this locus can be associated with characteristic patterns of gene expression in focal plant. Finally, we propose an hypothesis where Pi could play a role in explaining this case of NMS. Our study sheds light on how plants affect the physiology in their neighbourhood and opens perspectives for understanding plant-plant interactions.


Subject(s)
Oryza , Oryza/genetics , Oryza/microbiology , Genome-Wide Association Study , Biomass , Genetic Loci , Plants/genetics , Transcriptome
7.
J Fungi (Basel) ; 8(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36422038

ABSTRACT

Reducing nitrogen leaching and nitrous oxide emissions with the goal of more sustainability in agriculture implies better identification and characterization of the different patterns in nitrogen use efficiency by crops. However, a change in the ability of varieties to use nitrogen resources could also change the access to nutrient resources for a foliar pathogen such as rice blast and lead to an increase in the susceptibility of these varieties. This study focuses on the pre- and post-floral biomass accumulation and nitrogen uptake and utilization of ten temperate japonica rice genotypes grown in controlled conditions, and the relationship of these traits with molecular markers and susceptibility to rice blast disease. After flowering, the ten varieties displayed diversity in nitrogen uptake and remobilization. Surprisingly, post-floral nitrogen uptake was correlated with higher susceptibility to rice blast, particularly in plants fertilized with nitrogen. This increase in susceptibility is associated with a particular metabolite profile in the upper leavers of these varieties.

8.
Plant Methods ; 18(1): 100, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35962438

ABSTRACT

BACKGROUND: As a rapid and non-destructive method, Near Infrared Spectroscopy is classically proposed to assess plant traits in many scientific fields, to observe enlarged genotype panels and to document the temporal kinetic of some biological processes. Most often, supervised models are used. The signal is calibrated thanks to reference measurements, and dedicated models are generated to predict biological traits. An alternative unsupervised approach considers the whole spectra information in order to point out various matrix changes. Although more generic, and faster to implement, as it does not require a reference data set, this latter approach is rarely used to document biological processes, and does requires more information of the process. METHODS: In our work, an unsupervised model was used to document the flag leaf senescence of durum wheat (Triticum turgidum durum). Leaf spectra changes were observed using Moving Window Principal Component Analysis (MWPCA). The dates related to earlier and later spectra changes were compared to two key points on the senescence time course: senescence onset (T0) and the end of the leaf span (T1) derived from a supervised strategy. RESULTS: For almost all leaves and whatever the signal pre-treatments and window size considered, the MWPCA found significant spectral changes. The latter was highly correlated with T1 (0.59 ≤ r ≤ 0.86) whereas the correlations between the first significant spectrum changes and T0 were lower (0.09 ≤ r ≤ 0.56). These different relationships are discussed below since they define the potential as well as the limitations of MWPCA to model biological processes. CONCLUSION: Overall, our study demonstrates that the information contained in the spectra can be used when applying an unsupervised method, here the MWPCA, to characterize a complex biological phenomenon such leaf senescence. It also means that using whole spectra may be relevant in agriculture and plant biology.

9.
New Phytol ; 233(6): 2573-2584, 2022 03.
Article in English | MEDLINE | ID: mdl-35081666

ABSTRACT

Agroecosystem diversification through increased crop genetic diversity could provide multiple services such as improved disease control or increased productivity. However, we still poorly understand how genetic diversity affects agronomic performance. We grew 179 inbred lines of durum wheat in pure stands and in 202 binary mixtures in field conditions. We then tested the effect of allelic richness between genotypes and genotype richness on grain yield and Septoria tritici blotch disease. Allelic richness was tested at 19K single nucleotide polymorphisms distributed along the durum wheat genome. Both genotype richness and allelic richness could be equal to 1 or 2. Mixtures were overall more productive and less diseased than their pure stand components. Yet, we identified one locus at which allelic richness between genotypes was associated with increased disease severity and decreased grain yield. The effect of allelic richness at this locus was stronger than the effect of genotype richness on grain yield (-7.6% vs +5.7%). Our results suggest that positive effects of crop diversity can be reversed by unfavourable allelic associations. This highlights the need to integrate genomic data into crop diversification strategies. More generally, investigating plant-plant interactions at the genomic level is promising to better understand biodiversity-ecosystem functioning relationships.


Subject(s)
Ecosystem , Triticum , Alleles , Biodiversity , Genotype , Triticum/genetics
10.
J Exp Bot ; 72(18): 6570-6580, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34125197

ABSTRACT

As part of a trend towards diversifying cultivated areas, varietal mixtures are subject to renewed interest as a means to manage diseases. Besides the epidemiological effects of varietal mixtures on pathogen propagation, little is known about the effect of intraspecific plant-plant interactions and their impact on responses to disease. In this study, genotypes of rice (Oryza sativa) or durum wheat (Triticum turgidum) were grown with different conspecific neighbours and manually inoculated under conditions preventing pathogen propagation. Disease susceptibility was measured together with the expression of basal immunity genes as part of the response to intra-specific neighbours. The results showed that in many cases for both rice and wheat susceptibility to pathogens and immunity was modified by the presence of intraspecific neighbours. This phenomenon, which we term 'neighbour-modulated susceptibility' (NMS), could be caused by the production of below-ground signals and does not require the neighbours to be infected. Our results suggest that the mechanisms responsible for reducing disease in varietal mixtures in the field need to be re-examined.


Subject(s)
Oryza , Triticum , Genotype , Oryza/genetics , Triticum/genetics
11.
BMC Plant Biol ; 21(1): 99, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33602120

ABSTRACT

BACKGROUND: Nitrogen fertilization is known to increase disease susceptibility, a phenomenon called Nitrogen-Induced Susceptibility (NIS). In rice, this phenomenon has been observed in infections with the blast fungus Magnaporthe oryzae. A previous classical genetic study revealed a locus (NIS1) that enhances susceptibility to rice blast under high nitrogen fertilization. In order to further address the underlying genetics of plasticity in susceptibility to rice blast after fertilization, we analyzed NIS under greenhouse-controlled conditions in a panel of 139 temperate japonica rice strains. A genome-wide association analysis was conducted to identify loci potentially involved in NIS by comparing susceptibility loci identified under high and low nitrogen conditions, an approach allowing for the identification of loci validated across different nitrogen environments. We also used a novel NIS Index to identify loci potentially contributing to plasticity in susceptibility under different nitrogen fertilization regimes. RESULTS: A global NIS effect was observed in the population, with the density of lesions increasing by 8%, on average, under high nitrogen fertilization. Three new QTL, other than NIS1, were identified. A rare allele of the RRobN1 locus on chromosome 6 provides robust resistance in high and low nitrogen environments. A frequent allele of the NIS2 locus, on chromosome 5, exacerbates blast susceptibility under the high nitrogen condition. Finally, an allele of NIS3, on chromosome 10, buffers the increase of susceptibility arising from nitrogen fertilization but increases global levels of susceptibility. This allele is almost fixed in temperate japonicas, as a probable consequence of genetic hitchhiking with a locus involved in cold stress adaptation. CONCLUSIONS: Our results extend to an entire rice subspecies the initial finding that nitrogen increases rice blast susceptibility. We demonstrate the usefulness of estimating plasticity for the identification of novel loci involved in the response of rice to the blast fungus under different nitrogen regimes.


Subject(s)
Nitrogen/immunology , Oryza/genetics , Oryza/immunology , Plant Diseases/microbiology , Alleles , Ascomycota/physiology , Disease Resistance , Genome, Plant , Genome-Wide Association Study , Nitrogen/metabolism , Oryza/metabolism , Oryza/microbiology , Plant Diseases/immunology , Plant Proteins/genetics , Plant Proteins/immunology , Quantitative Trait Loci
12.
Front Plant Sci ; 8: 265, 2017.
Article in English | MEDLINE | ID: mdl-28293247

ABSTRACT

Highlight  Modifications in glutamine synthetase OsGS1-2 expression and fungal pathogenicity underlie nitrogen-induced susceptibility to rice blast. Understanding why nitrogen fertilization increase the impact of many plant diseases is of major importance. The interaction between Magnaporthe oryzae and rice was used as a model for analyzing the molecular mechanisms underlying Nitrogen-Induced Susceptibility (NIS). We show that our experimental system in which nitrogen supply strongly affects rice blast susceptibility only slightly affects plant growth. In order to get insights into the mechanisms of NIS, we conducted a dual RNA-seq experiment on rice infected tissues under two nitrogen fertilization regimes. On the one hand, we show that enhanced susceptibility was visible despite an over-induction of defense gene expression by infection under high nitrogen regime. On the other hand, the fungus expressed to high levels effectors and pathogenicity-related genes in plants under high nitrogen regime. We propose that in plants supplied with elevated nitrogen fertilization, the observed enhanced induction of plant defense is over-passed by an increase in the expression of the fungal pathogenicity program, thus leading to enhanced susceptibility. Moreover, some rice genes implicated in nitrogen recycling were highly induced during NIS. We further demonstrate that the OsGS1-2 glutamine synthetase gene enhances plant resistance to M. oryzae and abolishes NIS and pinpoint glutamine as a potential key nutrient during NIS.

13.
Rice (N Y) ; 9(1): 59, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27830537

ABSTRACT

BACKGROUND: Rice blast is one of the most damaging disease of rice. The use of resistant cultivars is the only practical way to control the disease in developing countries where most farmers cannot afford fungicides. However resistance often breaks down. Genome wide association studies (GWAS) allow high resolution exploration of rice genetic diversity for quantitative and qualitative resistance alleles that can be combined in breeding programs to achieve durability. We undertook a GWAS of resistance to rice blast using a tropical japonica panel of 150 accessions genotyped with 10,937 markers and an indica panel of 190 accessions genotyped with 14,187 markers. RESULTS: The contrasted distribution of blast disease scores between the indica and tropical japonica groups observed in the field suggest a higher level of quantitative resistance in the japonica panel than in the indica panel. In the japonica panel, two different loci significantly associated with blast resistance were identified in two experimental sites. The first, detected by seven SNP markers located on chromosome 1, colocalized with a cluster of four NBS-LRR including the two cloned resistance genes Pi37 and Pish/Pi35. The second is located on chromosome 12 and is associated with partial resistance to blast. In the indica panel, we identified only one locus associated with blast resistance. The three markers significantly detected at this locus were located on chromosome 8 in the 240 kb region carrying Pi33, which encompasses a cluster of three nucleotide binding site-leucine-rich repeat (NBS-LRRs) and six LRR-kinases in the Nipponbare sequence. Within this region, there is an insertion in the IR64 sequence compared to the Nipponbare sequence which also contains resistance gene analogs. Pi33 may belong to this insertion. The analysis of haplotype diversity in the target region revealed two distinct haplotypes, both associated with Pi33 resistance. CONCLUSIONS: It was possible to identify three chromosomal regions associated with resistance in the field through GWAS in this study. Future research should concentrate on specific indica markers targeting the identified insertion in the Pi33 zone. Specific experimental designs should also be implemented to dissect quantitative resistance among tropical japonica varieties.

14.
Front Plant Sci ; 7: 1558, 2016.
Article in English | MEDLINE | ID: mdl-27833621

ABSTRACT

Plants are often facing several stresses simultaneously. Understanding how they react and the way pathogens adapt to such combinational stresses is poorly documented. Here, we developed an experimental system mimicking field intermittent drought on rice followed by inoculation by the pathogenic fungus Magnaporthe oryzae. This experimental system triggers an enhancement of susceptibility that could be correlated with the dampening of several aspects of plant immunity, namely the oxidative burst and the transcription of several pathogenesis-related genes. Quite strikingly, the analysis of fungal transcription by RNASeq analysis under drought reveals that the fungus is greatly modifying its virulence program: genes coding for small secreted proteins were massively repressed in droughted plants compared to unstressed ones whereas genes coding for enzymes involved in degradation of cell-wall were induced. We also show that drought can lead to the partial breakdown of several major resistance genes by affecting R plant gene and/or pathogen effector expression. We propose a model where a yet unknown plant signal can trigger a change in the virulence program of the pathogen to adapt to a plant host that was affected by drought prior to infection.

15.
Rice (N Y) ; 6(1): 32, 2013 Nov 20.
Article in English | MEDLINE | ID: mdl-24280346

ABSTRACT

BACKGROUND: Nitrogen often increases disease susceptibility, a phenomenon that can be observed under controlled conditions and called NIS, for Nitrogen-Induced Susceptibility. NIS has long been reported in the case of rice blast disease caused by the fungus Magnaporthe oryzae. We used an experimental system that does not strongly affect plant development to address the question of NIS polymorphism across rice diversity and further explored this phenomenon in wheat. We tested the two major types of resistance, namely quantitative/partial resistance and resistance driven by known resistance genes. Indeed there are conflicting reports on the effects of NIS on the first one and none on the last one. Finally, the genetics of NIS is not well documented and only few loci have been identified that may control this phenomenon. RESULTS: Our data indicate that NIS is a general phenomenon affecting resistance to blast fungus in these two cereals. We show that the capacity of rice to display NIS is highly polymorphic and does not correlate with difference related to indica/japonica sub-groups. We also tested the robustness of three different major resistance genes under high nitrogen. Nitrogen partially breaks down resistance triggered by the Pi1 gene. Cytological examination indicates that penetration rate is not affected by high nitrogen whereas growth of the fungus is increased inside the plant. Using the CSSL mapping population between Nipponbare and Kasalath, we identified a Kasalath locus on chromosome 1, called NIS1, which dominantly increases susceptibility under high nitrogen. We discuss the possible relationships between Nitrogen Use Efficiency (NUE), disease resistance regulation and NIS. CONCLUSIONS: This work provides evidences that robust forms of partial resistance exist across diversity and can be easily identified with our protocol. This work also suggests that under certain environmental circumstances, complete resistance may breakdown, irrelevantly of the capacity of the fungus to mutate. These aspects should be considered while breeding for robust forms of resistance to blast disease.

16.
Front Plant Sci ; 4: 117, 2013.
Article in English | MEDLINE | ID: mdl-23641250

ABSTRACT

Rusts are one of the most severe threats to cereal crops because new pathogen races emerge regularly, resulting in infestations that lead to large yield losses. In 1999, a new race of stem rust, Puccinia graminis f. sp. tritici (Pgt TTKSK or Ug99), was discovered in Uganda. Most of the wheat and barley cultivars grown currently worldwide are susceptible to this new race. Pgt TTKSK has already spread northward into Iran and will likely spread eastward throughout the Indian subcontinent in the near future. This scenario is not unique to stem rust; new races of leaf rust (Puccinia triticina) and stripe rust (Puccinia striiformis) have also emerged recently. One strategy for countering the persistent adaptability of these pathogens is to stack complete- and partial-resistance genes, which requires significant breeding efforts in order to reduce deleterious effects of linkage drag. These varied resistance combinations are typically more difficult for the pathogen to defeat, since they would be predicted to apply lower selection pressure. Genetical genomics or expression Quantitative Trait Locus (eQTL) analysis enables the identification of regulatory loci that control the expression of many to hundreds of genes. Integrated deployment of these technologies coupled with efficient phenotyping offers significant potential to elucidate the regulatory nodes in genetic networks that orchestrate host defense responses. The focus of this review will be to present advances in genetical genomic experimental designs and analysis, particularly as they apply to the prospects for discovering partial disease resistance alleles in cereals.

17.
BMC Plant Biol ; 10: 206, 2010 Sep 17.
Article in English | MEDLINE | ID: mdl-20849575

ABSTRACT

BACKGROUND: Partial resistance to plant pathogens is extensively used in breeding programs since it could contribute to resistance durability. Partial resistance often builds up during plant development and confers quantitative and usually broad-spectrum resistance. However, very little is known on the mechanisms underlying partial resistance. Partial resistance is often explained by poorly effective induction of plant defense systems. By exploring rice natural diversity, we asked whether expression of defense systems before infection could explain partial resistance towards the major fungal pathogen Magnaporthe oryzae. The constitutive expression of 21 defense-related genes belonging to the defense system was monitored in 23 randomly sampled rice cultivars for which partial resistance was measured. RESULTS: We identified a strong correlation between the expression of defense-related genes before infection and partial resistance. Only a weak correlation was found between the induction of defense genes and partial resistance. Increasing constitutive expression of defense-related genes also correlated with the establishment of partial resistance during plant development. Some rice genetic sub-groups displayed a particular pattern of constitutive expression, suggesting a strong natural polymorphism for constitutive expression of defense. Constitutive levels of hormones like salicylic acid and ethylene cannot explain constitutive expression of defense. We could identify an area of the genome that contributes to explain both preformed defense and partial resistance. CONCLUSION: These results indicate that constitutive expression of defense-related genes is likely responsible for a large part of partial resistance in rice. The finding of this preformed defense system should help guide future breeding programs and open the possibility to identify the molecular mechanisms behind partial resistance.


Subject(s)
Immunity, Innate , Magnaporthe/pathogenicity , Oryza/immunology , Plant Diseases/genetics , Ethylenes/analysis , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Oligonucleotide Array Sequence Analysis , Oryza/genetics , Oryza/microbiology , Quantitative Trait Loci , Salicylic Acid/analysis
18.
Mol Plant Microbe Interact ; 21(7): 859-68, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18533827

ABSTRACT

The completion of the genome sequences of both rice and Magnaporthe oryzae has strengthened the position of rice blast disease as a model to study plant-pathogen interactions in monocotyledons. Genetic studies of blast resistance in rice were established in Japan as early as 1917. Despite such long-term study, examples of cultivars with durable resistance are rare, partly due to our limited knowledge of resistance mechanisms. A rising number of blast resistance genes and quantitative trait loci (QTL) have been genetically described, and some have been characterized during the last 20 years. Using the rice genome sequence, can we now go a step further toward a better understanding of the genetics of blast resistance by combining all these results? Is such knowledge appropriate and sufficient to improve breeding for durable resistance? A review of bibliographic references identified 85 blast resistance genes and approximately 350 QTL, which we mapped on the rice genome. These data provide a useful update on blast resistance genes as well as new insights to help formulate hypotheses about the molecular function of blast QTL, with special emphasis on QTL for partial resistance. All these data are available from the OrygenesDB database.


Subject(s)
Genes, Plant , Oryza/genetics , Oryza/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Genome, Plant , Host-Pathogen Interactions/genetics , Magnaporthe/genetics , Magnaporthe/pathogenicity , Models, Genetic , Physical Chromosome Mapping , Quantitative Trait Loci
19.
New Phytol ; 175(2): 340-350, 2007.
Article in English | MEDLINE | ID: mdl-17587382

ABSTRACT

During the breeding process of cultivated crops, resistance genes to pests and diseases are commonly introgressed from wild species. The size of these introgressions is predicted by theoretical models but has rarely been measured in cultivated varieties. By combining resistance tests with isogenic strains, genotyping and sequencing of different rice accessions, it was shown that, in the elite rice variety IR64, the resistance conferring allele of the rice blast resistance gene Pi33 was introgressed from the wild rice Oryza rufipogon (accession IRGC101508). Further characterization of this introgression revealed a large introgression at this locus in IR64 and the related variety IR36. The introgressed fragment represents approximately half of the short arm of rice chromosome 8. This is the first report of a large introgression in a cultivated variety of rice. Such a large introgression is likely to have been maintained during backcrossing only if a selection pressure was exerted on this genomic region. The possible traits that were selected are discussed.


Subject(s)
Oryza/genetics , Plant Diseases/genetics , Chromosome Mapping , Gene Expression Regulation, Plant , Genes, Plant , Genetic Predisposition to Disease , Genotype , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...