Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Proc Natl Acad Sci U S A ; 121(25): e2400566121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38870061

ABSTRACT

Intrinsic and acquired resistance to mitogen-activated protein kinase inhibitors (MAPKi) in melanoma remains a major therapeutic challenge. Here, we show that the clinical development of resistance to MAPKi is associated with reduced tumor expression of the melanoma suppressor Autophagy and Beclin 1 Regulator 1 (AMBRA1) and that lower expression levels of AMBRA1 predict a poor response to MAPKi treatment. Functional analyses show that loss of AMBRA1 induces phenotype switching and orchestrates an extracellular signal-regulated kinase (ERK)-independent resistance mechanism by activating focal adhesion kinase 1 (FAK1). In both in vitro and in vivo settings, melanomas with low AMBRA1 expression exhibit intrinsic resistance to MAPKi therapy but higher sensitivity to FAK1 inhibition. Finally, we show that the rapid development of resistance in initially MAPKi-sensitive melanomas can be attributed to preexisting subclones characterized by low AMBRA1 expression and that cotreatment with MAPKi and FAK1 inhibitors (FAKi) effectively prevents the development of resistance in these tumors. In summary, our findings underscore the value of AMBRA1 expression for predicting melanoma response to MAPKi and supporting the therapeutic efficacy of FAKi to overcome MAPKi-induced resistance.


Subject(s)
Adaptor Proteins, Signal Transducing , Drug Resistance, Neoplasm , Melanoma , Protein Kinase Inhibitors , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Humans , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Line, Tumor , Animals , Mice , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/antagonists & inhibitors , Xenograft Model Antitumor Assays , Mitogen-Activated Protein Kinases/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Female
2.
EMBO Mol Med ; 15(12): e17719, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37966164

ABSTRACT

Metastatic uveal melanomas are highly resistant to all existing treatments. To address this critical issue, we performed a kinome-wide CRISPR-Cas9 knockout screen, which revealed the LKB1-SIK2 module in restraining uveal melanoma tumorigenesis. Functionally, LKB1 loss enhances proliferation and survival through SIK2 inhibition and upregulation of the sodium/calcium (Na+ /Ca2+ ) exchanger SLC8A1. This signaling cascade promotes increased levels of intracellular calcium and mitochondrial reactive oxygen species, two hallmarks of cancer. We further demonstrate that combination of an SLC8A1 inhibitor and a mitochondria-targeted antioxidant promotes enhanced cell death efficacy in LKB1- and SIK2-negative uveal melanoma cells compared to control cells. Our study also identified an LKB1-loss gene signature for the survival prognostic of patients with uveal melanoma that may be also predictive of response to the therapy combination. Our data thus identify not only metabolic vulnerabilities but also new prognostic markers, thereby providing a therapeutic strategy for particular subtypes of metastatic uveal melanoma.


Subject(s)
Melanoma , Uveal Neoplasms , Humans , Calcium , Cell Proliferation , Melanoma/drug therapy , Reactive Oxygen Species , Uveal Neoplasms/genetics , Uveal Neoplasms/pathology
3.
Cancers (Basel) ; 14(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36230787

ABSTRACT

Epigenetic regulations, that comprise histone modifications and DNA methylation, are essential to processes as diverse as development and cancer. Among the histone post-translational modifications, lysine methylation represents one of the most important dynamic marks. Here, we focused on methyltransferases of the nuclear binding SET domain 1 (NSD) family, that catalyze the mono- and di-methylation of histone H3 lysine 36. We review the loss of function mutations of NSD1 in humans that are the main cause of SOTOS syndrome, a disease associated with an increased risk of developing cancer. We then report the role of NSD1 in triggering tumor suppressive or promoter functions according to the tissue context and we discuss the role of NSD1 in melanoma. Finally, we examine the ongoing efforts to target NSD1 signaling in cancers.

4.
Theranostics ; 12(9): 4374-4385, 2022.
Article in English | MEDLINE | ID: mdl-35673577

ABSTRACT

The NOTCH signaling system regulates a variety of cellular processes during embryonic development and homeostasis maintenance in different tissues and contexts. Hence, dysregulation of NOTCH signaling is associated with a plethora of human cancers, and there have been multiple efforts to target key components of this pathway. In this review, we briefly highlight the latest research advances in understanding HES6, a poorly studied component of the NOTCH pathway. We summarize the role of HES6 in cancers with a focus on uveal melanoma. Finally, we discuss the ongoing efforts to target the NOTCH-HES6 axis in cancers.


Subject(s)
Melanoma , Uveal Neoplasms , Basic Helix-Loop-Helix Transcription Factors/metabolism , Female , Humans , Pregnancy , Repressor Proteins/metabolism , Signal Transduction
5.
Cancers (Basel) ; 13(18)2021 Sep 12.
Article in English | MEDLINE | ID: mdl-34572799

ABSTRACT

The immune system is known to help fight cancers. Ten years ago, the first immune checkpoint inhibitor targeting CTLA4 was approved by the FDA to treat patients with metastatic melanoma. Since then, immune checkpoint therapies have revolutionized the field of oncology and the treatment of cancer patients. Numerous immune checkpoint inhibitors have been developed and tested, alone or in combination with other treatments, in melanoma and other cancers, with overall clear benefits to patient outcomes. However, many patients fail to respond or develop resistance to these treatments. It is therefore essential to decipher the mechanisms of action of immune checkpoints and to understand how immune cells are affected by signaling to be able to understand and overcome resistance. In this review, we discuss the signaling and effects of each immune checkpoint on different immune cells and their biological and clinical relevance. Restoring the functionality of T cells and their coordination with other immune cells is necessary to overcome resistance and help design new clinical immunotherapy strategies. In this respect, NK cells have recently been implicated in the resistance to anti-PD1 evoked by a protein secreted by melanoma, ITGBL1. The complexity of this network will have to be considered to improve the efficiency of future immunotherapies and may lead to the discovery of new immune checkpoints.

6.
J Clin Med ; 10(5)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800394

ABSTRACT

The ubiquitination system plays a critical role in regulation of large array of biological processes and its alteration has been involved in the pathogenesis of cancers, among them cutaneous melanoma, which is responsible for the most deaths from skin cancers. Over the last decades, targeted therapies and immunotherapies became the standard therapeutic strategies for advanced melanomas. However, despite these breakthroughs, the prognosis of metastatic melanoma patients remains unoptimistic, mainly due to intrinsic or acquired resistances. Many avenues of research have been investigated to find new therapeutic targets for improving patient outcomes. Because of the pleiotropic functions of ubiquitination, and because each step of ubiquitination is amenable to pharmacological targeting, much attention has been paid to the role of this process in melanoma development and resistance to therapies. In this review, we summarize the latest data on ubiquitination and discuss the possible impacts on melanoma treatments.

7.
Molecules ; 26(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810240

ABSTRACT

We previously reported that methiothepin, a small molecule known as a nonselective serotonin 5-HT receptor antagonist, inhibited the doxorubicin efflux activity of the Hedgehog receptor Ptch1 and enhanced the cytotoxic, pro-apoptotic, anti-proliferative, and anti-clonogenic effects of doxorubicin on adrenocortical carcinoma cells. Here, we show that methiothepin also inhibits doxorubicin efflux and increases doxorubicin cytotoxicity in melanoma cells which endogenously overexpress Ptch1. Melanoma patients having the BRAFV600E mutation are treated with vemurafenib, an inhibitor of BRAFV600E, often in combination with trametinib, an inhibitor of MEK. Almost all patients ultimately acquire resistance to the treatment leading to disease progression. Here, we report that methiothepin overcomes the resistance of BRAFV600E melanoma cells by enhancing the cytotoxicity of vemurafenib and trametinib on these cells leading to melanoma cells death. We observe that the addition of methiothepin to vemurafenib prevents migration of resistant melanoma cells more efficiently than vemurafenib alone. Our results provide an additional proof that Ptch1 drug efflux inhibition increases the effectiveness of anti-cancer treatments and overcomes resistance of melanoma cells expressing Ptch1.


Subject(s)
Antineoplastic Agents , Drug Resistance, Neoplasm/drug effects , Melanoma/drug therapy , Methiothepin , Skin Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/administration & dosage , Humans , Methiothepin/pharmacology , Methiothepin/therapeutic use , Patched-1 Receptor/metabolism , Pyridones/administration & dosage , Pyrimidinones/administration & dosage , Vemurafenib/administration & dosage
8.
Prog Retin Eye Res ; 85: 100968, 2021 11.
Article in English | MEDLINE | ID: mdl-33852963

ABSTRACT

Uveal melanoma (UM) is an aggressive and deadly neoplasm. In recent decades, great efforts have been made to obtain a more comprehensive understanding of genetics, genomics and molecular changes in UM, enabling the identification of key cellular processes and signalling pathways. Still, there is no effective treatment for the metastatic disease. Intratumoural heterogeneity (ITH) is thought to be one of the leading determinants of metastasis, therapeutic resistance and recurrence. Crucially, tumours are complex ecosystems, where cancer cells, and diverse cell types from their microenvironment engage in dynamic spatiotemporal crosstalk that allows cancer progression, adaptation and evolution. This highlights the urgent need to gain insight into ITH in UM and its intersection with the microenvironment to overcome treatment failure. Here we provide an overview of the studies and technologies to study ITH in human UMs and tumour micro-environmental composition. We discuss how to incorporate ITH into clinical consideration for the purpose of advocating for new clinical management. We focus on the application of single-cell transcriptomic analysis and propose that understanding the driving forces and functional consequences of the observed tumour heterogeneity holds promise for changing the treatment paradigm of metastatic UMs, surmounting resistance and improving patient prognosis.


Subject(s)
Melanoma , Transcriptome , Ecosystem , Humans , Medical Oncology , Melanoma/genetics , Tumor Microenvironment , Uveal Neoplasms
11.
Pigment Cell Melanoma Res ; 34(5): 978-983, 2021 09.
Article in English | MEDLINE | ID: mdl-33449414

ABSTRACT

Immune checkpoint inhibition (ICI) treatments improve outcomes for metastatic melanoma; however, up to 60% of treated patients do not respond to ICI and/or develop immune-related adverse events (irAEs). Currently, robust and reliable biomarker to predict response and/or occurrence of irAEs to ICI are missing. Herein, we wanted to explore whether germline variants (SNPs) could predict the clinical outcomes of melanoma patients treated with ICIs. We performed a whole exome sequencing using gDNA isolated from blood, from a discovery cohort of 57 patients with metastatic melanoma. The top associations were then tested in a validation cohort of 57 patients. Our work suggests that individual germline genetic variants have no or weak impact on the response to ICIs. Only, variants in IL1RL1 have a significant impact in treatment response. The role of IL1RL1 in the immune response against melanoma and as a theranostic marker warrants further investigations.


Subject(s)
Exons , Germ-Line Mutation , Immune Checkpoint Inhibitors/administration & dosage , Melanoma , Neoplasm Proteins/genetics , Polymorphism, Single Nucleotide , Receptors, Interleukin-1 Type I/genetics , Adult , Female , Humans , Male , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Neoplasm Metastasis , Exome Sequencing
12.
Cell Death Differ ; 28(6): 1837-1848, 2021 06.
Article in English | MEDLINE | ID: mdl-33462405

ABSTRACT

Ubiquitination by serving as a major degradation signal of proteins, but also by controlling protein functioning and localization, plays critical roles in most key cellular processes. Here, we show that MITF, the master transcription factor in melanocytes, controls ubiquitination in melanoma cells. We identified FBXO32, a component of the SCF E3 ligase complex as a new MITF target gene. FBXO32 favors melanoma cell migration, proliferation, and tumor development in vivo. Transcriptomic analysis shows that FBXO32 knockdown induces a global change in melanoma gene expression profile. These include the inhibition of CDK6 in agreement with an inhibition of cell proliferation and invasion upon FBXO32 silencing. Furthermore, proteomic analysis identifies SMARC4, a component of the chromatin remodeling complexes BAF/PBAF, as a FBXO32 partner. FBXO32 and SMARCA4 co-localize at loci regulated by FBXO32, such as CDK6 suggesting that FBXO32 controls transcription through the regulation of chromatin remodeling complex activity. FBXO32 and SMARCA4 are the components of a molecular cascade, linking MITF to epigenetics, in melanoma cells.


Subject(s)
Cellular Reprogramming/genetics , Epigenesis, Genetic/genetics , Melanoma/genetics , Muscle Proteins/metabolism , Proteomics/methods , SKP Cullin F-Box Protein Ligases/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Humans , Melanoma/pathology , Mice , Mice, Nude , Transfection , Ubiquitination , Xenograft Model Antitumor Assays
13.
Cell Death Differ ; 28(6): 1990-2000, 2021 06.
Article in English | MEDLINE | ID: mdl-33462406

ABSTRACT

Intratumor heterogeneity has been recognized in numerous cancers as a major source of metastatic dissemination. In uveal melanomas, the existence and identity of specific subpopulations, their biological function and their contribution to metastasis remain unknown. Here, in multiscale analyses using single-cell RNA sequencing of six different primary uveal melanomas, we uncover an intratumoral heterogeneity at the genomic and transcriptomic level. We identify distinct transcriptional cell states and diverse tumor-associated populations in a subset of the samples. We also decipher a gene regulatory network underlying an invasive and poor prognosis state driven in part by the transcription factor HES6. HES6 heterogenous expression has been validated by RNAscope assays within primary human uveal melanomas, which further unveils the existence of these cells conveying a dismal prognosis in tumors diagnosed with a favorable outcome using bulk analyses. Depletion of HES6 impairs proliferation, migration and metastatic dissemination in vitro and in vivo using the chick chorioallantoic membrane assay, demonstrating the essential role of HES6 in uveal melanomas. Thus, single-cell analysis offers an unprecedented view of primary uveal melanoma heterogeneity, identifies bona fide biomarkers for metastatic cells in the primary tumor, and reveals targetable modules driving growth and metastasis formation. Significantly, our findings demonstrate that HES6 is a valid target to stop uveal melanoma progression.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Melanoma/genetics , Repressor Proteins/metabolism , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Uveal Neoplasms/genetics , Cell Line, Tumor , Humans , Neoplasm Metastasis , Prognosis
14.
Mol Cancer ; 20(1): 12, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33413419

ABSTRACT

Resistances to immunotherapies remains a major hurdle towards a cure for melanoma in numerous patients. An increase in the mesenchymal phenotype and a loss of differentiation have been clearly associated with resistance to targeted therapies. Similar phenotypes have been more recently also linked to resistance to immune checkpoint therapies. We demonstrated here that the loss of MIcrophthalmia associated Transcription Factor (MITF), a pivotal player in melanocyte differentiation, favors the escape of melanoma cells from the immune system. We identified Integrin beta-like protein 1 (ITGBL1), a secreted protein, upregulated in anti-PD1 resistant patients and in MITFlow melanoma cells, as the key immunomodulator. ITGBL1 inhibited immune cell cytotoxicity against melanoma cells by inhibiting NK cells cytotoxicity and counteracting beneficial effects of anti-PD1 treatment, both in vitro and in vivo. Mechanistically, MITF inhibited RUNX2, an activator of ITGBL1 transcription. Interestingly, VitaminD3, an inhibitor of RUNX2, improved melanoma cells to death by immune cells. In conclusion, our data suggest that inhibition of ITGBL1 might improve melanoma response to immunotherapies.


Subject(s)
Carcinogenesis/pathology , Cytotoxicity, Immunologic , Immunologic Factors/metabolism , Integrin beta1/metabolism , Killer Cells, Natural/immunology , Melanoma/immunology , Animals , Cell Line, Tumor , Cell Proliferation , Melanoma/pathology , Mice, Inbred C57BL , Microphthalmia-Associated Transcription Factor/metabolism
15.
Cell Death Dis ; 12(1): 64, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431809

ABSTRACT

In the search of biguanide-derived molecules against melanoma, we have discovered and developed a series of bioactive products and identified the promising new compound CRO15. This molecule exerted anti-melanoma effects on cells lines and cells isolated from patients including the ones derived from tumors resistant to BRAF inhibitors. Moreover, CRO15 was able to decrease viability of cells lines from a broad range of cancer types. This compound acts by two distinct mechanisms. First by activating the AMPK pathway induced by a mitochondrial disorder. Second by inhibition of MELK kinase activity, which induces cell cycle arrest and activation of DNA damage repair pathways by p53 and REDD1 activation. All of these mechanisms activate autophagic and apoptotic processes resulting in melanoma cell death. The strong efficacy of CRO15 to reduce the growth of melanoma xenograft sensitive or resistant to BRAF inhibitors opens interesting perspective.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Melanoma/genetics , Protein Serine-Threonine Kinases/metabolism , Cell Death , Cell Proliferation , Humans , Melanoma/pathology , Signal Transduction
16.
Mol Cancer ; 19(1): 170, 2020 12 05.
Article in English | MEDLINE | ID: mdl-33276788

ABSTRACT

The clinical benefit of immune checkpoint inhibitory therapy (ICT) in advanced melanomas is limited by primary and acquired resistance. The molecular determinants of the resistance have been extensively studied, but these discoveries have not yet been translated into therapeutic benefits. As such, a paradigm shift in melanoma treatment, to surmount the therapeutic impasses linked to the resistance, is an important ongoing challenge.This review outlines the multifaceted interplay between microphthalmia-associated transcription factor (MITF), a major determinant of the biology of melanoma cells, and the immune system. In melanomas, MITF functions downstream oncogenic pathways and microenvironment stimuli that restrain the immune responses. We highlight how MITF, by controlling differentiation and genome integrity, may regulate melanoma-specific antigen expression by interfering with the endolysosomal pathway, KARS1, and antigen processing and presentation. MITF also modulates the expression of coinhibitory receptors, i.e., PD-L1 and HVEM, and the production of an inflammatory secretome, which directly affects the infiltration and/or activation of the immune cells.Furthermore, MITF is also a key determinant of melanoma cell plasticity and tumor heterogeneity, which are undoubtedly one of the major hurdles for an effective immunotherapy. Finally, we briefly discuss the role of MITF in kidney cancer, where it also plays a key role, and in immune cells, establishing MITF as a central mediator in the regulation of immune responses in melanoma and other cancers.We propose that a better understanding of MITF and immune system intersections could help in the tailoring of current ICT in melanomas and pave the way for clinical benefits and long-lasting responses.


Subject(s)
Immune System/metabolism , Immunotherapy , Melanoma/immunology , Melanoma/therapy , Microphthalmia-Associated Transcription Factor/metabolism , Skin Neoplasms/immunology , Skin Neoplasms/therapy , Animals , Antigen Presentation , Humans , Microphthalmia-Associated Transcription Factor/genetics , Tumor Microenvironment
17.
Cell Death Discov ; 6: 22, 2020.
Article in English | MEDLINE | ID: mdl-32337074

ABSTRACT

To address unmet clinical need for uveal melanomas, we assessed the effects of BH3-mimetic molecules, the ABT family, known to exert pro-apoptotic activities in cancer cells. Our results uncovered that ABT-263 (Navitoclax), a potent and orally bioavailable BCL-2 family inhibitor, induced antiproliferative effects in metastatic human uveal melanoma cells through cell cycle arrest at the G0/G1 phase, loss of mitochondrial membrane potential, and subsequently apoptotic cell death monitored by caspase activation and poly-ADP ribose polymerase cleavage. ABT-263-mediated reduction in tumor growth was also observed in vivo. We observed in some cells that ABT-263 treatment mounted a pro-survival response through activation of the ER stress signaling pathway. Blocking the PERK signaling pathway increased the pro-apoptotic ABT-263 effect. We thus uncovered a resistance mechanism in uveal melanoma cells mediated by activation of endoplasmic reticulum stress pathway. Therefore, our study identifies ABT-263 as a valid therapeutic option for patients suffering from uveal melanoma.

18.
J Invest Dermatol ; 140(11): 2253-2259.e4, 2020 11.
Article in English | MEDLINE | ID: mdl-32240722

ABSTRACT

Integration of chromatin immunoprecipitation-sequencing and microarray data enabled us to identify previously unreported MITF-target genes, among which the amino acid transporter SLC7A5 is also included. We reported that small interfering RNA-mediated SLC7A5 knockdown decreased pigmentation in B16F10 cells but neither affected morphology nor dendricity. Treatment with the SLC7A5 inhibitors 2-amino-2-norbornanecarboxylic acid (BCH) or JPH203 also decreased melanin synthesis in B16F10 cells. Our findings indicated that BCH was as potent as reference depigmenting agent, kojic acid, but acted through a different pathway not affecting tyrosinase activity. BCH also decreased pigmentation in human MNT1 melanoma cells or normal human melanocytes. Finally, we tested BCH on a more physiological model, using reconstructed human epidermis and confirmed a strong inhibition of pigmentation, revealing the clinical potential of SLC7A5 inhibition and positioning BCH as a depigmenting agent suitable for cosmetic or dermatological intervention in hyperpigmentation diseases.


Subject(s)
Large Neutral Amino Acid-Transporter 1/physiology , Melanins/biosynthesis , Animals , Carboxylic Acids/pharmacology , Cell Line, Tumor , Humans , Large Neutral Amino Acid-Transporter 1/genetics , Melanins/analysis , Mice , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/physiology , Norbornanes/pharmacology , Pigmentation/drug effects , Pyrones/pharmacology , RNA, Small Interfering/genetics
19.
Theranostics ; 10(4): 1777-1797, 2020.
Article in English | MEDLINE | ID: mdl-32042336

ABSTRACT

Malignant melanoma is the most deadly form of skin cancer. It originates from melanocytic cells and can also arise at other body sites. Early diagnosis and appropriate medical care offer excellent prognosis with up to 5-year survival rate in more than 95% of all patients. However, long-term survival rate for metastatic melanoma patients remains at only 5%. Indeed, malignant melanoma is known for its notorious resistance to most current therapies and is characterized by both genetic and epigenetic alterations. In cutaneous melanoma (CM), genetic alterations have been implicated in drug resistance, yet the main cause of this resistance seems to be non-genetic in nature with a change in transcription programs within cell subpopulations. This change can adapt and escape targeted therapy and immunotherapy cytotoxic effects favoring relapse. Because they are reversible in nature, epigenetic changes are a growing focus in cancer research aiming to prevent or revert the drug resistance with current therapies. As such, the field of epigenetic therapeutics is among the most active area of preclinical and clinical research with effects of many classes of epigenetic drugs being investigated. Here, we review the multiplicity of epigenetic alterations, mainly histone alterations and chromatin remodeling in both cutaneous and uveal melanomas, opening opportunities for further research in the field and providing clues to specifically control these modifications. We also discuss how epigenetic dysregulations may be exploited to achieve clinical benefits for the patients, the limitations of these therapies, and recent data exploring this potential through combinatorial epigenetic and traditional therapeutic approaches.


Subject(s)
Epigenomics/methods , Histones/metabolism , Melanoma/drug therapy , Skin Neoplasms/pathology , Animals , Chromatin Assembly and Disassembly/genetics , Cytotoxicity, Immunologic , Drug Resistance, Neoplasm/genetics , Humans , Immunotherapy/adverse effects , Melanoma/genetics , Melanoma/mortality , Mice , Molecular Targeted Therapy/methods , Prognosis , Proto-Oncogene Proteins B-raf/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/mortality , Uveal Neoplasms/genetics , Melanoma, Cutaneous Malignant
20.
Oncoimmunology ; 8(12): e1665976, 2019.
Article in English | MEDLINE | ID: mdl-31741766

ABSTRACT

HVEM (Herpes Virus Entry Mediator) engagement of BTLA (B and T Lymphocyte Attenuator) triggers inhibitory signals in T cells and could play a role in evading antitumor immunity. Here, HVEM expression levels in melanoma metastases were analyzed by immunohistochemistry, correlated with overall survival (OS) in 116 patients, and validated by TCGA transcriptomic data. Coincident expression of HVEM and its ligand BTLA was studied in tumor cells and tumor-infiltrating lymphocytes (TILs) by flow cytometry (n = 21) and immunofluorescence (n = 5). Candidate genes controlling HVEM expression in melanoma were defined by bioinformatics studies and validated by siRNA gene silencing. We found that in patients with AJCC stage III and IV melanoma, OS was poorer in those with high HVEM expression on melanoma cells, than in those with a low expression, by immunohistochemistry (p = .0160) or TCGA transcriptomics (p = .0282). We showed a coincident expression of HVEM at the surface of melanoma cells and of BTLA on TILs. HVEM was more widely expressed than PD-L1 in melanoma cells. From a mechanistic perspective, in contrast to PDL1, HVEM expression did not correlate with an IFNγ signature but with an aggressive gene signature. Interestingly, this signature contained MITF, a key player in melanoma biology, whose expression correlated strongly with HVEM. Finally, siRNA gene silencing validated MITF control of HVEM expression. In conclusion, HVEM expression seems to be a prognosis marker and targeting this axis by checkpoint-inhibitors may be of interest in metastatic melanoma.

SELECTION OF CITATIONS
SEARCH DETAIL
...