Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1379613, 2024.
Article in English | MEDLINE | ID: mdl-38698850

ABSTRACT

Onco-virotherapy is an emergent treatment for cancer based on viral vectors. The therapeutic activity is based on two different mechanisms including tumor-specific oncolysis and immunostimulatory properties. In this study, we evaluated onco-virotherapy in vitro responses on immunocompetent non-small cell lung cancer (NSCLC) patient-derived tumoroids (PDTs) and healthy organoids. PDTs are accurate tools to predict patient's clinical responses at the in vitro stage. We showed that onco-virotherapy could exert specific antitumoral effects by producing a higher number of viral particles in PDTs than in healthy organoids. In the present work, we used multiplex protein screening, based on proximity extension assay to highlight different response profiles. Our results pointed to the increase of proteins implied in T cell activation, such as IFN-γ following onco-virotherapy treatment. Based on our observation, oncolytic viruses-based therapy responders are dependent on several factors: a high PD-L1 expression, which is a biomarker of greater immune response under immunotherapies, and the number of viral particles present in tumor tissue, which is dependent to the metabolic state of tumoral cells. Herein, we highlight the use of PDTs as an alternative in vitro model to assess patient-specific responses to onco-virotherapy at the early stage of the preclinical phases.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Discovery , Lung Neoplasms , Oncolytic Virotherapy , Proteomics , Humans , Proteomics/methods , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/metabolism , Oncolytic Virotherapy/methods , Organoids , Oncolytic Viruses/immunology , Proteome , Biomarkers, Tumor/metabolism , B7-H1 Antigen/metabolism
2.
iScience ; 26(10): 108094, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37860774

ABSTRACT

This work describes a patient-derived tumoroid model (PDTs) to support precision medicine in lung oncology. The use of human adipose tissue-derived microvasculature and patient-derived peripheral blood mononuclear cells (PBMCs) permits to achieve a physiologically relevant tumor microenvironment. This study involved ten patients at various stages of tumor progression. The vascularized, immune-infiltrated PDT model could be obtained within two weeks, matching the requirements of the therapeutic decision. Histological and transcriptomic analyses confirmed that the main features from the original tumor were reproduced. The 3D tumor model could be used to determine the dynamics of response to antiangiogenic therapy and platinum-based chemotherapy. Antiangiogenic therapy showed a significant decrease in vascular endothelial growth factor (VEGF)-A expression, reflecting its therapeutic effect in the model. In an immune-infiltrated PDT model, chemotherapy showed the ability to decrease the levels of lymphocyte activation gene-3 protein (LAG-3), B and T lymphocyte attenuator (BTLA), and inhibitory receptors of T cells functions.

3.
Cancers (Basel) ; 15(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37835418

ABSTRACT

Long-term modelization of cancer as it changes in the human body is a difficult goal, particularly when designing and testing new therapeutic strategies. This becomes even more difficult with metastasis modeling to show chemotherapeutic molecule delivery directly to tumoral cells. Advanced therapeutics, including oncolytic viruses, antibody-based and cell-based therapies are increasing. The question is, are screening tests also evolving? Next-generation therapeutics need equally advanced screening tests, which whilst difficult to achieve, are the goal of our work here, creating models of micro- and macrotumors using 3D bioprinting. We developed advanced colorectal cancer tumor processing techniques to provide options for cellular expansion, microtumor printing, and long-term models, which allow for the evaluation of the kinetics of penetration testing, therapeutic success, targeted therapies, and personalized medicine. We describe how we tested tumors from a primary colorectal patient and, applying 3D bioprinting, matured long-term models for oncolytic metastatic screening. Three-dimensional microtumors were kept alive for the longest time ever recorded in vitro, allowing longitudinal studies, screening of oncolytic viruses and realistic modelization of colorectal cancer. These 3D bioprinted models were maintained for around 6 months and were able to demonstrate the effective delivery of a product to the tumoral environment and represent a step forward in therapeutic screening.

4.
Mol Ther Oncolytics ; 30: 103-116, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37635744

ABSTRACT

TG6002 is an oncolytic vaccinia virus expressing FCU1 protein, which converts 5-fluorocytosine into 5-fluorouracil. The study objectives were to assess tolerance, viral replication, 5-fluorouracil synthesis, and tumor microenvironment modifications to treatment in dogs with spontaneous malignant tumors. Thirteen dogs received one to three weekly intratumoral injections of TG6002 and 5-fluorocytosine. The viral genome was assessed in blood and tumor biopsies by qPCR. 5-Fluorouracil concentrations were measured in serum and tumor biopsies by liquid chromatography or high-resolution mass spectrometry. Histological and immunohistochemical analyses were performed. The viral genome was detected in blood (7/13) and tumor biopsies (4/11). Viral replication was suspected in 6/13 dogs. The median intratumoral concentration of 5-fluorouracil was 314 pg/mg. 5-Fluorouracil was not detected in the blood. An increase in necrosis (6/9) and a downregulation of intratumoral regulatory T lymphocytes (6/6) were observed. Viral replication, 5-fluorouracil synthesis, and tumor microenvironment changes were more frequently observed with higher TG6002 doses. This study confirmed the replicative properties, targeted chemotherapy synthesis, and reversion of the immunosuppressive tumor microenvironment in dogs with spontaneous malignant tumors treated with TG6002 and 5-fluorocytosine.

5.
Biomedicines ; 11(7)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37509464

ABSTRACT

Radiation therapy and platinum-based chemotherapy are common treatments for lung cancer patients. Several factors are considered for the low overall survival rate of lung cancer, such as the patient's physical state and the complex heterogeneity of the tumor, which leads to resistance to the treatment. Consequently, precision medicines are needed for the patients to improve their survival and their quality of life. Until now, no patient-derived tumoroid model has been reported to predict the efficiency of radiation therapy in non-small-cell lung cancer. Using our patient-derived tumoroid model, we report that this model could be used to evaluate the efficiency of radiation therapy and cisplatin-based chemotherapy in non-small-cell lung cancer. In addition, these results can be correlated to clinical outcomes of patients, indicating that this patient-derived tumoroid model can predict the response to radiotherapy and chemotherapy in non-small-cell lung cancer.

6.
Biosens Bioelectron ; 215: 114571, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35932554

ABSTRACT

Organ-on-chip and tumor-on-chip microfluidic cell cultures represent a fast-growing research field for modelling organ functions and diseases, for drug development, and for promising applications in personalized medicine. Still, one of the bottlenecks of this technology is the analysis of the huge amount of bio-images acquired in these dynamic 3D microenvironments, a task that we propose to achieve by exploiting the interdisciplinary contributions of computer science and electronic engineering. In this work, we apply this strategy to the study of oncolytic vaccinia virus (OVV), an emerging agent in cancer immunotherapy. Infection and killing of cancer cells by OVV were recapitulated and directly imaged in tumor-on-chip. By developing and applying appropriate image analysis strategies and advanced automatic algorithms, we uncovered synergistic cooperation of OVV and immune cells to kill cancer cells. Moreover, we observed that the kinetics of immune cells were modified in presence of OVV and that these immune modulations varied during the course of infection. A correlation between cancer cell infection and cancer-immune interaction time was pointed out, strongly supporting a cause-effect relationship between infection of cancer cells and their recognition by the immune cells. These results shed new light on the mode of action of OVV, and suggest new clinical avenues for immunotherapy developments.


Subject(s)
Biosensing Techniques , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Neoplasms/therapy , Oncolytic Virotherapy/methods , Tumor Microenvironment , Vaccinia virus
7.
Biomedicines ; 10(5)2022 May 10.
Article in English | MEDLINE | ID: mdl-35625840

ABSTRACT

Patient-derived tumoroid (PDT) has been developed and used for anti-drug screening in the last decade. As compared to other existing drug screening models, a PDT-based in vitro 3D cell culture model could preserve the histological and mutational characteristics of their corresponding tumors and mimic the tumor microenvironment. However, few studies have been carried out to improve the microvascular network connecting the PDT and its surrounding microenvironment, knowing that poor tumor-selective drug transport and delivery is one of the major reasons for both the failure of anti-cancer drug screens and resistance in clinical treatment. In this study, we formed vascularized PDTs in six days using multiple cell types which maintain the histopathological features of the original cancer tissue. Furthermore, our results demonstrated a vascular network connecting PDT and its surrounding microenvironment. This fast and promising PDT model opens new perspectives for personalized medicine: this model could easily be used to test all therapeutic treatments and could be connected with a microfluidic device for more accurate drug screening.

8.
BMC Vet Res ; 16(1): 307, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32843040

ABSTRACT

BACKGROUND: Cancer is a leading cause of mortality for both humans and dogs. As spontaneous canine cancers appear to be relevant models of human cancers, developing new therapeutic approaches could benefit both species. Oncolytic virotherapy is a promising therapeutic approach in cancer treatment. TG6002 is a recombinant oncolytic vaccinia virus deleted in the thymidine kinase and ribonucleotide reductase genes and armed with the suicide gene FCU1 that encodes a protein which catalyses the conversion of the non-toxic 5-fluorocytosine into the toxic metabolite 5-fluorouracil. Previous studies have shown the ability of TG6002 to infect and replicate in canine tumor cell lines, and demonstrated its oncolytic potency in cell lines, xenograft models and canine mammary adenocarcinoma explants. Moreover, 5-fluorouracil synthesis has been confirmed in fresh canine mammary adenocarcinoma explants infected with TG6002 with 5-fluorocytosine. This study aims at assessing the safety profile and viral shedding after unique or repeated intramuscular injections of TG6002 in seven healthy Beagle dogs. RESULTS: Repeated intramuscular administrations of TG6002 at the dose of 5 × 107 PFU/kg resulted in no clinical or biological adverse effects. Residual TG6002 in blood, saliva, urine and feces of treated dogs was not detected by infectious titer assay nor by qPCR, ensuring the safety of the virus in the dogs and their environment. CONCLUSIONS: These results establish the good tolerability of TG6002 in healthy dogs with undetectable viral shedding after multiple injections. This study supports the initiation of further studies in canine cancer patients to evaluate the oncolytic potential of TG6002 and provides critical data for clinical development of TG6002 as a human cancer therapy.


Subject(s)
Biological Products/administration & dosage , Oncolytic Viruses/isolation & purification , Vaccinia virus/isolation & purification , Virus Shedding , Animals , Biological Products/adverse effects , Dogs , Injections, Intramuscular/veterinary , Male , Oncolytic Virotherapy
9.
Int J Nanomedicine ; 13: 337-349, 2018.
Article in English | MEDLINE | ID: mdl-29391793

ABSTRACT

The treatment of cancer using nanomedicines is limited by the poor penetration of these potentially powerful agents into and throughout solid tumors. Externally controlled mechanical stimuli, such as the generation of cavitation-induced microstreaming using ultrasound (US), can provide a means of improving nanomedicine delivery. Notably, it has been demonstrated that by focusing, monitoring and controlling the US exposure, delivery can be achieved without damage to surrounding tissue or vasculature. However, there is a risk that such stimuli may disrupt the structure and thereby diminish the activity of the delivered drugs, especially complex antibody and viral-based nanomedicines. In this study, we characterize the impact of cavitation on four different agents, doxorubicin (Dox), cetuximab, adenovirus (Ad) and vaccinia virus (VV), representing a scale of sophistication from a simple small-molecule drug to complex biological agents. To achieve tight regulation of the level and duration of cavitation exposure, a "cavitation test rig" was designed and built. The activity of each agent was assessed with and without exposure to a defined cavitation regime which has previously been shown to provide effective and safe delivery of agents to tumors in preclinical studies. The fluorescence profile of Dox remained unchanged after exposure to cavitation, and the efficacy of this drug in killing a cancer cell line remained the same. Similarly, the ability of cetuximab to bind its epidermal growth factor receptor target was not diminished following exposure to cavitation. The encoding of the reporter gene luciferase within the Ad and VV constructs tested here allowed the infectivity of these viruses to be easily quantified. Exposure to cavitation did not impact on the activity of either virus. These data provide compelling evidence that the US parameters used to safely and successfully delivery nanomedicines to tumors in preclinical models do not detrimentally impact on the structure or activity of these nanomedicines.


Subject(s)
Drug Delivery Systems/methods , Ultrasonics/methods , Adenoviridae , Cell Line , Cetuximab/administration & dosage , Cetuximab/chemistry , Doxorubicin/administration & dosage , Genetic Vectors/administration & dosage , Genetic Vectors/chemistry , Humans , Nanomedicine/methods , Vaccinia virus
10.
Vaccine ; 36(22): 3101-3111, 2018 05 24.
Article in English | MEDLINE | ID: mdl-28571695

ABSTRACT

The influenza vaccine manufacturing industry is looking for production cell lines that are easily scalable, highly permissive to multiple viruses, and more effective in term of viral productivity. One critical characteristic of such cell lines is their ability to grow in suspension, in serum free conditions and at high cell densities. Influenza virus causing severe epidemics both in human and animals is an important threat to world healthcare. The repetitive apparition of influenza pandemic outbreaks in the last 20years explains that manufacturing sector is still looking for more effective production processes to replace/supplement embryonated egg-based process. Cell-based production strategy, with a focus on avian cell lines, is one of the promising solutions. Three avian cell lines, namely duck EB66®cells (Valneva), duck AGE.CR® cells (Probiogen) and quail QOR/2E11 cells (Baxter), are now competing with traditional mammalian cell platforms (Vero and MDCK cells) used for influenza vaccine productions and are currently at advance stage of commercial development for the manufacture of influenza vaccines. The DuckCelt®-T17 cell line presented in this work is a novel avian cell line developed by Transgene. This cell line was generated from primary embryo duck cells with the constitutive expression of the duck telomerase reverse transcriptase (dTERT). The DuckCelt®-T17 cells were able to grow in batch suspension cultures and serum-free conditions up to 6.5×106cell/ml and were easily scaled from 10ml up to 3l bioreactor. In the present study, DuckCelt®-T17 cell line was tested for its abilities to produce various human, avian and porcine influenza strains. Most of the viral strains were produced at significant infectious titers (>5.8 log TCID50/ml) with optimization of the infection conditions. Human strains H1N1 and H3N2, as well as all the avian strains tested (H5N2, H7N1, H3N8, H11N9, H12N5) were the most efficiently produced with highest titre reached of 9.05 log TCID50/ml for A/Panama/2007/99 influenza H3N2. Porcine strains were also greatly rescued with titres from 4 to 7 log TCID50/ml depending of the subtypes. Interestingly, viral kinetics showed maximal titers reached at 24h post-infection for most of the strains, allowing early harvest time (Time Of Harvest: TOH). The B strains present specific production kinetics with a delay of 24h before reaching the maximal viral particle release. Process optimization on H1N1 2009 human pandemic strain allowed identifying best operating conditions for production (MOI, trypsin concentration, cell density at infection) allowing improving the production level by 2 log. Our results suggest that the DuckCelt®-T17 cell line is a very promising platform for industrial production of influenza viruses and particularly for avian viral strains.


Subject(s)
Cell Culture Techniques/methods , Cell Line , Orthomyxoviridae/growth & development , Virus Cultivation/methods , Virus Replication , Animals , Bioreactors , Ducks , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H3N2 Subtype/growth & development , Influenza A Virus, H3N2 Subtype/physiology , Influenza A Virus, H3N8 Subtype/growth & development , Influenza A Virus, H3N8 Subtype/physiology , Influenza A Virus, H5N2 Subtype/growth & development , Influenza A Virus, H5N2 Subtype/physiology , Influenza A Virus, H7N1 Subtype/growth & development , Influenza A Virus, H7N1 Subtype/physiology , Influenza Vaccines , Orthomyxoviridae/physiology
11.
Mol Ther ; 24(9): 1627-33, 2016 09.
Article in English | MEDLINE | ID: mdl-27375160

ABSTRACT

Oncolytic viruses (OV) could become the most powerful and selective cancer therapies. However, the limited transport of OV into and throughout tumors following intravenous injection means their clinical administration is often restricted to direct intratumoral dosing. Application of physical stimuli, such as focused ultrasound, offers a means of achieving enhanced mass transport. In particular, shockwaves and microstreaming resulting from the instigation of an ultrasound-induced event known as inertial cavitation can propel OV hundreds of microns. We have recently developed a polymeric cup formulation which, when delivered intravenously, provides the nuclei for instigation of sustained inertial cavitation events within tumors. Here we report that exposure of tumors to focused ultrasound after intravenous coinjection of cups and oncolytic vaccinia virus , leads to substantial and significant increases in activity. When cavitation was instigated within SKOV-3 or HepG2 xenografts, reporter gene expression from vaccinia virus was enhanced 1,000-fold (P < 0.0001) or 10,000-fold (P < 0.001), respectively. Similar increases in the number of vaccinia virus genomes recovered from tumors were also observed. In survival studies, the application of cup mediated cavitation to a vaccinia virus expressing a prodrug converting enzyme provided significant (P < 0.05) retardation of tumor growth. This technology could improve the clinical utility of all biological therapeutics including OV.


Subject(s)
Gene Transfer Techniques , Genetic Vectors/genetics , Oncolytic Virotherapy , Oncolytic Viruses/genetics , Vaccinia virus/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Fluorouracil/pharmacology , Genetic Vectors/administration & dosage , Humans , Mice , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Oncolytic Virotherapy/methods , Transduction, Genetic , Treatment Outcome , Tumor Burden/drug effects , Tumor Burden/genetics , Xenograft Model Antitumor Assays
13.
Viral Immunol ; 20(4): 664-71, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18158739

ABSTRACT

Recombinant vaccinia virus with tumor cell specificity may provide a versatile tool either for direct lysis of cancer cells or for the targeted transfer of genes encoding immunomodulatory or toxic molecules. We report the expression of a tumor-specific single-chain antibody on the surface of intracellular mature vaccinia virus particles (IMV). The wild-type p14 externally membrane-associated protein p14 (A27L gene), which is not required for viral binding and replication, was replaced by p14 fusion molecules carrying a single-chain antibody directed against the tumor-associated antigen MUC-1. MUC-1 mucin is an epithelial cell antigen whose aberrant expression plays a role in autoimmunity and tumor immunity in the majority of human carcinomas and multiple myeloma. Fusion protein carrying the single-chain antibody at the NH2-terminal position was expressed and exposed at the envelope of the corresponding recombinant virus. The construct containing the antibody was able to bind a MUC-1 specific 60mer peptide. Moreover, targeted virus infects MUC-1-expressing cells in vitro more efficiently.


Subject(s)
Antibodies, Viral/immunology , Neoplasms/therapy , Vaccinia virus/genetics , Vaccinia virus/immunology , Animals , Antibodies, Viral/therapeutic use , Antigens, Neoplasm/immunology , Carrier Proteins/genetics , Carrier Proteins/immunology , Cell Line, Tumor , Genetic Vectors , Humans , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Membrane Proteins , Mice , Mucins/immunology , Neoplasms/genetics , Neoplasms/immunology , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/therapeutic use , Vaccinia/virology , Vaccinia virus/growth & development , Vaccinia virus/isolation & purification , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunology
14.
Cancer Res ; 65(20): 9536-46, 2005 Oct 15.
Article in English | MEDLINE | ID: mdl-16230419

ABSTRACT

To redress the immune imbalances created by pathologies such as cancer, it would be beneficial to create novel cytokine molecules, which combine desired cytokine activities with reduced toxicities. Due to their divergent but complementary activities, it is of interest to combine interleukin-2 (IL-2) and IL-18 into one recombinant molecule for immunotherapy. Evaluation of a fusokine protein that combines murine IL-2/IL-18 shows that it is stable, maintains IL-2 and IL-18 bioactivities, has notably reduced IL-2 associated toxicities, and has a novel lymphocyte-stimulating activity. An adeno-viral expression system was used to explore the biology of this "fusokine". Inclusion of the IL-18 prosequence (proIL-18) increases the expression, secretion, and potency of this fusokine. In vivo gene transfer experiments show that Ad-IL-2/proIL-18 dramatically outdoes Ad-IL-2, Ad-proIL-18, or the combination of both, by inducing high rates of tumor rejection in several murine models. Both innate and adaptive effector mechanisms are required for this antitumor activity.


Subject(s)
Immunotherapy, Active/methods , Interleukin-18/immunology , Interleukin-2/immunology , Recombinant Fusion Proteins/immunology , Adenoviridae/genetics , Animals , Cell Line, Tumor , Dendritic Cells/immunology , Glycoproteins/metabolism , Humans , Immunity, Innate/immunology , Intercellular Signaling Peptides and Proteins , Interleukin-18/biosynthesis , Interleukin-18/genetics , Interleukin-18/metabolism , Interleukin-2/biosynthesis , Interleukin-2/genetics , Interleukin-2/metabolism , Interleukin-2 Receptor alpha Subunit , Killer Cells, Natural/immunology , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lymphocyte Activation/immunology , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Receptors, Interleukin/metabolism , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , T-Lymphocytes/immunology
15.
Proc Natl Acad Sci U S A ; 101 Suppl 2: 14567-71, 2004 Oct 05.
Article in English | MEDLINE | ID: mdl-15333750

ABSTRACT

DNA vaccines, comprised of plasmid DNA encoding proteins from pathogens, allergens, and tumors, are being evaluated as prophylactic vaccines and therapeutic treatments for infectious diseases, allergies, and cancer; plasmids encoding normal human proteins are likewise being tested as vaccines and treatments for autoimmune diseases. Examples of in vivo prophylaxis and immunotherapy, based on different types of immune responses (humoral and cellular), in a variety of disease models and under evaluation in early phase human clinical trials are presented. Viral vectors continue to show better levels of expression than those achieved by DNA plasmid vectors. We have focused our clinical efforts, at this time, on the use of recombinant viral vectors for both vaccine as well as cytokine gene transfer studies. We currently have four clinical programs in cancer immunotherapy. Two nonspecific immunotherapy programs are underway that apply adenoviral vectors for the transfer of cytokine genes into tumors in situ. An adenovirus-IFN gamma construct (TG1042) is currently being tested in phase II clinical trials in cutaneous lymphoma. A similar construct, adenovirus-IL2 (TG1024), also injected directly into solid tumors, is currently being tested in patients with solid tumors (about one-half of which are melanoma). Encouraging results are seen in both programs. Two cancer vaccine immunotherapy programs focus on two cancer-associated antigens: human papilloma virus E6 and E7 proteins and the epithelial cancer-associated antigen MUC1. Both are encoded by a highly attenuated vaccinia virus vector [modified vaccinia Ankara (MVA)] and both are coexpressed with IL-2. Encouraging results seen in both of these programs are described.


Subject(s)
Cancer Vaccines/therapeutic use , Immunotherapy/methods , Neoplasms/therapy , Vaccines, DNA/therapeutic use , Antigens, Neoplasm , Breast Neoplasms/therapy , Cancer Vaccines/genetics , Cytokines/genetics , Female , Genetic Therapy , Humans , Kidney Neoplasms/therapy , Lung Neoplasms/therapy , Male , Neoplasms/immunology , Papillomavirus Infections/therapy , Prostatic Neoplasms/therapy , Uterine Cervical Neoplasms/therapy , Vaccines, DNA/genetics
16.
Cancer Gene Ther ; 9(5): 470-7, 2002 May.
Article in English | MEDLINE | ID: mdl-11961670

ABSTRACT

Immune responses to tumor-associated antigens are often dampened by a tumor-induced state of immune anergy. Previous work has attempted to overcome tumor-induced T-cell anergy by the direct injection of vectors carrying the genes encoding one of a variety of cytokines. We hypothesised that the polyclonal stimulation of T cells, preferably through the TCR complex, would result in a cascade of cytokines associated with T-cell activation and would be best able to overcome T-cell anergy. Here we use the highly attenuated MVA poxvirus to express on tumor cells, in vitro and in vivo, either of three membrane-bound monoclonal antibodies specific for murine TCR complex. Using this system, we have expressed antibodies specific for the CD3 epsilon chain (KT3), TCR alpha/beta complex (H57-597), and V beta 7 chain (TR310). Tumor cells bristling with these antibodies are capable of inducing murine T-cell proliferation and cytokine production. When injected into growing tumors (P815, RenCa, and B16F10), these constructs induce the activation of immune effector cells and result in the rejection of the tumor. Histological and FACS analysis of tumor-infiltrating leukocytes reveal that the injection of recombinant virus-expressing antibodies specific for the TCR complex attracts and activates (CD25(+), CD69(+)) CD4 and CD8 lymphocytes. This approach represents a novel strategy to overcome T-cell anergy in tumors and allow the stimulation of tumor-specific T cells.


Subject(s)
Genetic Therapy/methods , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism , Amino Acid Sequence , Animals , Antibodies, Monoclonal/metabolism , Blotting, Western , CD3 Complex/genetics , Cell Division , Flow Cytometry , Humans , Immunohistochemistry , Mice , Models, Genetic , Molecular Sequence Data , Phenotype , Poxviridae/genetics , Protein Binding , Rats , Recombinant Proteins/metabolism , Time Factors , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...