Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Front Plant Sci ; 13: 982668, 2022.
Article in English | MEDLINE | ID: mdl-36147244

ABSTRACT

In the context of eco-sustainable acquisition of food security, arsenic (As) acts as a deterring factor, which easily infiltrates our food chain via plant uptake. Therefore, devising climate-smart strategies becomes exigent for minimizing the imposed risks. Pertinently, Serendipita indica (S. indica) is well reputed for its post-symbiotic stress alleviatory and phyto-promotive potential. Management of phosphorus (P) is acclaimed for mitigating arsenic toxicity in plants by inhibiting the uptake of As molecules due to the competitive cationic exchange in the rhizosphere. The current study was designed to investigate the tandem effects of S. indica and P in combating As toxicity employing two rice genotypes, i.e., Guodao-6 (GD-6; As-sensitive genotype) and Zhongzhe You-1 (ZZY-1; As-tolerant genotype). After successful fungal colonization, alone and combined arsenic (10 µ M L-1) and phosphorus (50 µ M L-1) treatments were applied. Results displayed that the recuperating effects of combined S. indica and P treatment were indeed much profound than their alone treatments; however, most of the beneficial influences were harnessed by ZZY-1 in comparison with GD-6. Distinct genotypic differences were observed for antioxidant enzyme activities, which were induced slightly higher in S. indica-colonized ZZY-1 plants, with or without additional P, as compared to GD-6. Ultrastructure images of root and shoot exhibited ravages of As in the form of chloroplasts-, nuclei-and cell wall-damage with enlarged vacuole area, mellowed mostly by the combined treatment of S. indica and P in both genotypes. Gene expression of PHTs family transporters was regulated at different levels in almost all treatments across genotypes. Conclusively, the results of this study validated the promising role of S. indica and additional P in mitigating As stress, albeit corroborated that the extent of relevant benefit exploitation is highly genotype-dependent. Verily, unlocking the potential of nature-friendly solutions will mend the anthropogenic damage already been done to our environment.

3.
Antioxidants (Basel) ; 10(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34439516

ABSTRACT

Aflatoxin B1 (AFB1), a threatening mycotoxin, usually provokes oxidative stress and causes hepatotoxicity in animals and humans. Luteolin (LUTN), well-known as an active phytochemical agent, acts as a strong antioxidant. This research was designed to investigate whether LUTN exerts protective effects against AFB1-induced hepatotoxicity and explore the possible molecular mechanism in mice. A total of forty-eight mice were randomly allocated following four treatment groups (n = 12): Group 1, physiological saline (CON). Group 2, treated with 0.75 mg/kg BW aflatoxin B1 (AFB1). Group 3, treated with 50 mg/kg BW luteolin (LUTN), and Group 4, treated with 0.75 mg/kg BW aflatoxin B1 + 50 mg/kg BW luteolin (AFB1 + LUTN). Our findings revealed that LUTN treatment significantly alleviated growth retardation and rescued liver injury by relieving the pathological and serum biochemical alterations (ALT, AST, ALP, and GGT) under AFB1 exposure. LUTN ameliorated AFB1-induced oxidative stress by scavenging ROS and MDA accumulation and boosting the capacity of the antioxidant enzyme (CAT, T-SOD, GSH-Px and T-AOC). Moreover, LUTN treatment considerably attenuates the AFB1-induced apoptosis in mouse liver, as demonstrated by declined apoptotic cells percentage, decreased Bax, Cyt-c, caspase-3 and caspase-9 transcription and protein with increased Bcl-2 expression. Notably, administration of LUTN up-regulated the Nrf2 and its associated downstream molecules (HO-1, NQO1, GCLC, SOD1) at mRNA and protein levels under AFB1 exposure. Our results indicated that LUTN effectively alleviated AFB1-induced liver injury, and the underlying mechanisms were associated with the activation of the Nrf2 signaling pathway. Taken together, LUTN may serve as a potential mitigator against AFB1-induced liver injury and could be helpful for the development of novel treatment to combat liver diseases in humans and/or animals.

4.
Toxins (Basel) ; 11(3)2019 03 10.
Article in English | MEDLINE | ID: mdl-30857375

ABSTRACT

Aflatoxin B1 (AFB1) is a serious threat to the poultry industry. Proanthocyanidins (PCs) demonstrates a broad range of biological, pharmacological, therapeutic, and chemoprotective properties. The aim of this study was to investigate the ameliorative effects of PCs against AFB1-induced histopathology, oxidative stress, and apoptosis via the mitochondrial pathway in the bursa of Fabricius (BF) of broilers. One hundred forty-four one-day old Cobb chicks were randomly assigned into four treatment groups of six replicates (6 birds each replicate) for 28 days. Groups were fed on the following four diets; (1) Basal diet without addition of PCs or AFB1 (Control); (2) basal diet supplemented with 1 mg/kg AFB1 from contaminated corn (AFB1); (3) basal diet supplemented with 250 mg/kg PCs (PCs); and (4) basal diet supplemented with 1 mg/kg AFB1 + 250 mg/kg PCs (AFB1+ PCs). The present study results showed that antioxidant enzymes activities of total superoxide dismutase (T-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione S-transferase (GST) in AFB1 treated group were (p < 0.05) decreased, whereas malondialdehyde (MDA) contents were significantly increased in comparison with the control group. Furthermore, we found that dietary PCs treatment ameliorated AFB1-induced oxidative stress in the BF through inhibiting the accumulation of MDA content and enhancing the antioxidant enzymes activities (T-SOD, CAT, GSH-Px, and GST). Similarly, PCs markedly enhanced messenger RNA (mRNA) expression of antioxidant genes (SOD, CAT, GPx1, and GST) in comparison with AFB1 group. Moreover, histological results showed that PCs alleviated AFB1-induced apoptotic cells in the BF of broilers. In addition, both mRNA and protein expression results manifested that mitochondrial-apoptosis-associated genes (Bax, caspase-9, caspase-3, and p53 and cytochrome c) showed up-regulation, while (Bcl-2) showed down-regulation in AFB1 fed group. The supplementation of PCs to AFB1 diet significantly reversed the mRNA and protein expression of these apoptosis-associated genes, as compared to the AFB1 group. Our results demonstrated that PCs ameliorated AFB1-induced oxidative stress by modulating the antioxidant defense system and apoptosis in the BF through mitochondrial pathway in broilers.


Subject(s)
Aflatoxin B1/toxicity , Antioxidants/pharmacology , Bursa of Fabricius/drug effects , Mitochondria/drug effects , Proanthocyanidins/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Bursa of Fabricius/metabolism , Bursa of Fabricius/pathology , Chickens , Mitochondria/metabolism , Organ Size/drug effects , Oxidative Stress/drug effects , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
5.
Anim Sci J ; 88(8): 1204-1211, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27925366

ABSTRACT

The present study evaluated the effects of Saccharomyces boulardii on duodenal digestive enzymes, morphology and cytokine induction response in broiler chicken. A total of 200 birds were allotted into two groups (n = 100) and each group divided into five replications (n = 20). The control group was fed basal diet in addition to antibiotic (virginiamycin 20 mg/kg), and treatment group received (1 × 108  colony-forming units/kg feed) S. boulardii in addition to basal diet lasting for 72 days. The results compared to control group revealed that adenosine triphosphatase, gamma glutamyl transpeptidase, lipase and trypsin activities were higher, while, no significant improvement was observed in amylase activities in the duodenum of the treatment group. Moreover, morphological findings showed that villus height, width and number of goblet cells markedly increased. Additionally, transmission electron microscopy visualized that villus height, width and structural condensation significantly increased in the treatment group. The immunohistological observations showed increased numbers of immunoglobulin A (IgA)-positive cells in the duodenum of the treatment group. Meanwhile, cytokine production levels of tumor necrosis factor-α, interleukin (IL)-10, transforming growth factor-ß and secretory IgA markedly increased, and IL-6 statistically remained unchanged as compared to the control group. These findings illustrated that initial contact of S. boulardii to the duodenum has significant impact in improving enzymatic activity, intestinal morphology and cytokine response in broiler chicken.


Subject(s)
Chickens/anatomy & histology , Chickens/metabolism , Cytokines/biosynthesis , Duodenum/anatomy & histology , Duodenum/enzymology , Probiotics/administration & dosage , Saccharomyces boulardii , Adenosine Triphosphatases/metabolism , Administration, Oral , Animals , Duodenum/metabolism , Duodenum/ultrastructure , Immunoglobulin A/metabolism , Lipase/metabolism , Microscopy, Electron, Transmission , Trypsin/metabolism , gamma-Glutamyltransferase/metabolism
6.
Hum Genet ; 131(2): 209-16, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21761136

ABSTRACT

We performed homozygosity mapping in a consanguineous Pakistani family segregating autosomal-recessive congenital cataracts and identified linkage to a 3.03 Mb locus on chromosome 6p24 containing the GCNT2 gene. GCNT2 encodes glucosaminyl (N-acetyl) transferase 2, an enzyme responsible for the formation of the blood group I antigen. Rare biallelic GCNT2 mutations have been shown to cause the association of congenital cataracts and the adult i blood group, making GCNT2 the prime candidate gene for the observed phenotype. Indeed, we identified a homozygous deletion segregating with cataracts that encompasses exons 1B, 1C, 2 and 3 of GCNT2. Long-range polymerase chain reaction and breakpoint sequencing revealed that affected individuals in this and in a second, apparently unrelated Pakistani family segregating congenital cataracts are homozygous for the same 93 kb deletion. The deletion is flanked by Alu repeats of the AluS family on both sides and microsatellite genotyping suggested that its occurrence in the two families was the product of recurrent Alu-Alu repeat-mediated nonhomologous recombinations or an old founder effect. Subsequently, we showed that cataract-affected individuals in both families have the adult i blood group, whereas unaffected individuals have blood group I as the vast majority of the population. Because the GCNT2 locus is rich in Short INterspersed Elements (SINE repeats) and thus likely prone to genomic rearrangements, microdeletions or microduplications at this locus might cause a larger than currently anticipated fraction of apparently isolated autosomal-recessive cataracts.


Subject(s)
Alu Elements , Blood Group Antigens/genetics , Cataract/congenital , Cataract/genetics , N-Acetylglucosaminyltransferases/genetics , Sequence Deletion , Base Sequence , Consanguinity , Female , Genetic Linkage , Humans , Male , Pedigree , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...