Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 357: 141865, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570047

ABSTRACT

Agriculture is vital to human life and economic development even though it may have a detrimental influence on soil quality. Agricultural activities can deteriorate the soil quality, endangers the ecosystem health and functioning, food safety, and human health. To resolve the problem of soil degradation, alternative soil conditioners such as wood ash are being explored for their potential to improve soil-plant systems. This study provides an overview of the production, properties, and effects of wood ash on soil properties, crop productivity, and environmental remediation. A comprehensive search of relevant databases was conducted in order to locate and assess original research publications on the use of wood ash in agricultural and environmental management. According to the findings, wood ash, a byproduct of burning wood, may improve the structure, water-holding capacity, nutrient availability, and buffering capacity of soil as well as other physico-chemical, and biological attributes of soil. Wood ash has also been shown to increase agricultural crop yields and help with the remediation of polluted regions. Wood ash treatment, however, has been linked to several adverse effects, such as increased trace element concentrations and altered microbial activity. The examination found that wood ash could be a promising material to be used as soil conditioner and an alternative supply of nutrients for agricultural soils, while, wood ash contributes to soil improvement and environmental remediation, highlighting its potential as a sustainable solution for addressing soil degradation and promoting environmental sustainability in agricultural systems.


Subject(s)
Environmental Restoration and Remediation , Soil Pollutants , Soil , Wood , Soil/chemistry , Soil Pollutants/analysis , Environmental Restoration and Remediation/methods , Crop Production/methods , Agriculture/methods , Crops, Agricultural/growth & development
2.
Appl Microbiol Biotechnol ; 107(22): 6761-6773, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37698607

ABSTRACT

Pullulan is a polymer produced by Aureobasidium spp. The yield of pullulan production can be impacted by the cellular differentiation of Aureobasidium spp., which changes with alterations in the growth environment. To improve pullulan yield, identifying key factors that regulate cellular differentiation is crucial. In this study, the main form of pullulan synthesis in Aureobasidium pullulans NG was through swollen cells (SC). The results showed that citric acid (CA) can regulate the cellular differentiation of Aureobasidium pullulans NG by accumulating higher levels of CA in the cells to maintain growth in SC form and increase pullulan production. The addition of 1.0% CA to Aureobasidium pullulans NG for 96 h resulted in a significant increase in pullulan production, producing 18.32 g/l compared to the control group which produced 10.23 g/l. Our findings suggest that controlling cellular differentiation using CA is a promising approach for enhancing pullulan production in Aureobasidium pullulans. KEY POINTS: • The regulation of cell differentiation in Aureobasidium pullulans NG is demonstrated to be influenced by citric acid. • Intracellular citric acid levels in Aureobasidium pullulans NG have been shown to support the growth of swollen cells. • Citric acid has been found to increase pullulan production in Aureobasidium pullulans NG.

SELECTION OF CITATIONS
SEARCH DETAIL
...