Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Spectrosc ; 77(3): 292-302, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36345563

ABSTRACT

Protein-protein interactions (PPIs) have great importance for intracellular signal transduction and sustaining the homeostasis of an organism. Thus, the identification of PPIs is necessary to better understand the downstream signaling functions of the proteins in healthy and pathological conditions. Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) is a powerful tool for detecting PPIs in living cells. In literature, FRET analysis methods such as donor photobleaching (FLIM), acceptor photobleaching, spectral imaging, and the three-filter cube method (sensitized emission) are abundantly applied to investigate PPIs; however, they require various expensive instrumentations, and their calculation methods are very time consuming. Since confocal microscopy applications and live cell-based techniques of FRET are very costly, scientists sometimes prefer plate readers for FRET experiments. However, plate reader applications also have many disadvantages and considerations compared to confocal fluorescence microscopy, and complex calculation procedures should be performed. To overcome these problems, we propose a FRET-based high-throughput assay method with a standard monochromator-based microplate reader, which is generally available in most biochemistry laboratories, and an alternative calculation procedure. This rapid, low cost, and effective analysis method enables the scientists to prescreen PPIs in living cells as a preliminary study and quick glance at the experiment before preparing the whole experimental setup with the expensive instrumentations. Additionally, the alternative calculation procedure provides the FRET area comparison without complex bleed-through calculations in a non-conventional manner by shortening the analysis processes with this quick and uncomplicated spectral representation.


Subject(s)
Fluorescence Resonance Energy Transfer , Fluorescence Resonance Energy Transfer/methods , Green Fluorescent Proteins/chemistry , Microscopy, Fluorescence/methods , Luminescent Proteins/chemistry
2.
J Biomed Opt ; 25(1): 1-14, 2020 01.
Article in English | MEDLINE | ID: mdl-31983145

ABSTRACT

Obesity is associated with a higher risk of developing breast cancer and with worse disease outcomes for women of all ages. The composition, density, and organization of the breast tissue stroma are also known to play an important role in the development and progression of the disease. However, the connections between obesity and stromal remodeling are not well understood. We sought to characterize detailed organization features of the collagen matrix within healthy and cancerous breast tissues acquired from mice exposed to either a normal or high fat (obesity inducing) diet. We performed second-harmonic generation and spectral two-photon excited fluorescence imaging, and we extracted the level of collagen-associated fluorescence (CAF) along with metrics of collagen content, three-dimensional, and two-dimensional organization. There were significant differences in the CAF intensity and overall collagen organization between normal and tumor tissues; however, obesity-enhanced changes in these metrics, especially when three-dimensional organization metrics were considered. Thus, our studies indicate that obesity impacts significantly collagen organization and structure and the related pathways of communication may be important future therapeutic targets.


Subject(s)
Collagen/metabolism , Extracellular Matrix/metabolism , Mammary Neoplasms, Experimental/metabolism , Obesity/metabolism , Animals , Diet , Female , Mammary Glands, Animal , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence, Multiphoton/methods , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...