Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 115(36): 10665-81, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21812460

ABSTRACT

We present herein a host-guest supramolecular system by which we were able to obtain precise control of the stereospecificity of a new and unusual adiabatic photoisomerization reaction capable of restoring reversibly the original configuration. The host-guest system is composed of (a) a naphthalene ring linked centrosymmetrically-via sp(2) hybridized oxygen atoms-with methoxytriethyleneglycol chains (1) and (b) a nanotubular cage formed by four self-assembled face-to-face ß-cyclodextrins threaded onto the long "axle" of 1. The compound 1 can exist in distinct cis,cis, cis,trans, and trans,trans conformations that are spectrally distinguishable (see Scheme 1 ). Spectroscopic and kinetic manifestations of the torsional isomerization of 1 in the lowest excited singlet state both in solution and within the tubular cage were investigated. The results provide clear evidence that the compact cavity completely blocks the photoisomerization pathway manifested in common solution (cis,cis* → cis,trans*), allowing observation of stereospecific, volume-conserving turning of the naphthalene ring about the two "quasidouble" bonds C(Naph)-O by φ ≈ 180° (cis,cis* → trans,trans*). The photoisomerization is purely adiabatic, and the encaged molecule restores its original configuration by generating torque thermally, when relaxing to the ground state.

2.
J Phys Chem B ; 114(24): 8181-90, 2010 Jun 24.
Article in English | MEDLINE | ID: mdl-20507145

ABSTRACT

The geometric isomeric diversity of a centrosymmetrically disubstituted naphthalene derivative with flexible methoxytriethyleneglycol chains has been investigated both in the liquid and the solid state. Owing to the fact that the exocyclic C(Aryl)-O linking appears to be essentially a double bond, the material can exist in discrete geometric isomers. Variable temperature ultraviolet absorption and fluorescence spectroscopy combined with single crystal X-ray diffraction reveal the nature of the various stereoisomers present in the liquid and solid phase. Computational support is also given wherever possible. In solution, the material exists predominantly as a mixture of two rapidly interconverting stereoisomers; namely, the thermodynamically preferred cis, cis and the energetically closest lying cis, trans configuration. In the solid state, optical spectroscopic methods provide evidence for the presence of a small amount of the energetically highly unstable trans, trans stereoisomer, kinetically trapped in the lattice defined by the scaffold of the predominant cis, cis isomeric form. Unlocking of the seemingly frozen cis, cis right arrow over left arrow trans, trans equilibrium was observed in the molten state.

3.
J Phys Chem B ; 114(2): 780-5, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-20017526

ABSTRACT

Energetically highly disfavored geometric isomers are present in only trace amounts in solution and hence cannot be clearly observed by conventional spectroscopic methods. Here, we provide spectroscopic evidence that a suitably sized/shaped cavitand (alpha-cyclodextrin) can discriminate distinctive stereochemical differences between all possible cis-trans stereoisomers of a qualified compound, showing selective recognition solely for the target unstable isomer. We tested a set of guests, and we were able to obtain, for each one separately, purely thermodynamic selectivity of the host for the energetically highly dispreferred stereoisomer among all other equilibrating geometric isomers under ambient conditions.

4.
Chemistry ; 15(17): 4228-32, 2009.
Article in English | MEDLINE | ID: mdl-19291721

ABSTRACT

Doing the hula twist? A photochemically stimulated inversion of an sp(2)-hybridized oxygen atom upon simultaneous rotation of two adjacent bonds may be possible in a pure singlet excited potential energy surface in uninhibited fluid media (see scheme).


Subject(s)
Models, Chemical , Naphthalenes/chemistry , Photochemistry , Isomerism , Molecular Structure , Oxygen/chemistry
5.
J Am Chem Soc ; 129(43): 13247-53, 2007 Oct 31.
Article in English | MEDLINE | ID: mdl-17924629

ABSTRACT

Detailed studies on the kinetics and the thermodynamics of the excited-state torsional isomerization of the title molecule (1) relative to exocyclic C2-O bond, when dissolved in 3-methylpentane, are reported by means of nontime- and time-resolved fluorescence spectroscopy. Over the broad temperature range studied, 1 exists in spectrally distinct, thermally equilibrated s-cis and s-trans conformations in the ground state (S(0)). In the lowest excited singlet state (S(1)) and above 260 K a pure adiabatic interconversion channel is activated that interconverts s-cis* and s-trans* conformers through a nearly fully reversible isomerization pathway with an activation energy of about 29 kJ/mol. The excited-state equilibrium constant is found to be remarkably temperature-independent just barely exceeding 1 above 260 K. Contrary to the predominantly irreversible photoisomerization mechanism generally observed in related compounds, this work provides insights into the high reversibility of an excited-state rotameric equilibration in solution.

6.
J Phys Chem B ; 110(33): 16428-38, 2006 Aug 24.
Article in English | MEDLINE | ID: mdl-16913774

ABSTRACT

The general complexation scheme as well as the dynamic features of the supramolecular structures resulting from the interaction of the laser dye 2,5-diphenyl-1,3,4-oxadiazole (PPD) with the naturally occurring alpha-, beta-, and gamma-cyclodextrins in water are studied by means of fluorescence spectroscopy, both steady-state (SS) and time-resolved (TR). PPD interacts weakly, from a thermodynamic point of view, with alpha-cyclodextrin (alpha-CD), forming 1:1 complexes with an association constant of K(11) = 85 +/- 4 M(-1). However, the local motion of the substrate (PPD) with respect to the ligand (CD) in the complexed form is hindered; namely, dynamically, they are strongly coupled and only a global tumbling motion, = 370 +/- 30 ps, of the whole adduct is observed. The next homologue beta-CD also forms 1:1 entities with PPD, but although the binding strength of reactants (K(11) = 682 +/- 60 M(-1)) is almost an order of magnitude greater than the former case with the alpha-CD, these are dynamically weakly coupled. In fact, two independent motions are detected: one is that of the whole nanostructure motion (1:1, PPD/beta-CD) with a global rotational relaxation time of = 480 +/- 30 ps, and the other is an internal librational motion of the dye inside the host cavity with an average angular displacement of theta approximately 27 degrees . Finally, the interaction of PPD with the wider and more flexible cavity of the gamma-CD "triggers" a self-associative scheme of the initially formed supramolecular building blocks, namely, singly occupied complexes, leading to the formation of nanotubular superstructures. It is found that these linear arrays are constituted from more than 17 gamma-CD units which are held together with the aid of dimers of PPD. Interestingly, our results supported that two distinct dimeric forms of PPD play the role of the "shaft" between adjacent cyclodextrin units. The topology of the dimers in the interlinking space of gamma-CD units is such that PPD molecules are held in suitable proximity, resulting, upon excitation, in the observation of dual excimer emission.

SELECTION OF CITATIONS
SEARCH DETAIL
...