Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38730914

ABSTRACT

In this paper, an iron-aluminide intermetallic compound with cerium addition was subjected to Vickers microhardness testing. A full range of Vickers microhardness loadings was applied: 10, 25, 50, 100, 200, 300, 500, and 1000 g. Tests were conducted in two areas: 0.5 mm under the surface of the rolled specimen and in the center. The aim was to find the optimal loading range that gives the true material microhardness, also deemed load-independent hardness, HLIH. The results suggest that in the surface area, the reverse indentation size effect (RISE) occurred, similar to ceramics and brittle materials, while in the center, indentation size effect (ISE) behavior was obtained, more similar to metals. This clearly indicated an optimal microhardness of over 500 g in the surface region and over 100 g in the central region of the specimen. Load dependencies were quantitatively described by Meyer's law, proportional specimen resistance (PSR), and the modified PSR model. The modified PSR model proved to be the most adequate.

2.
Polymers (Basel) ; 16(2)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38256977

ABSTRACT

The development of active edible coatings with improved mechanical and barrier properties is a huge challenge. In this study, active edible coatings for sliced cheese have been developed using pullulan (Pull) in combination with two different biopolymers, chitosan (CS) and gelatine (Gel), and a combination of hydrolats as a source of active compounds with antimicrobial effects. In comparison to the monolayer coating, the bilayer coating system demonstrates improved barrier and mechanical properties. A preliminary assessment of the antimicrobial effect of lemongrass and curry plant hydrolats has revealed that both hydrolats exhibited antimicrobial activity against the targeted bacterium Staphylococcus aureus, albeit at different levels. The obtained results suggest that a mixture of 1.56% lemongrass and 12.5% curry plant hydrolats yielded a lower fractional inhibitory concentration (FIC) value. Bilayer coating systems (Pull/CS and Pull/Gel) with an incorporated mixture of hydrolats have demonstrated effectiveness in both cases: artificial contamination before application of the coating system and after application of the coating system. In both contamination scenarios, the coating systems consistently effectively limited bacterial proliferation, indicating the antimicrobial effect of the hydrolat mixture in the coating layers. In the case of artificial contamination before applying the coating system, both coatings demonstrated antimicrobial effectiveness, but the formulation with chitosan had a biocide effect, while the other, with gelatine, had only a bacteriostatic effect in a long-term setting. In the second case, both Pull/CS and Pull/Gel coatings demonstrated effectiveness in inhibiting bacterial growth regardless of the moment of contamination of the sample; the Pull/CS coating showed slightly better antimicrobial activity, achieving complete elimination of bacteria earlier compared with the Pull/Gel coating system.

3.
Materials (Basel) ; 16(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834629

ABSTRACT

The main task that the article introduces is the experimental study of how the geometry of contact surfaces affects the quality and mechanical properties of a rotary friction weld (RFW), as well as the findings of whether the RFW technology is suitable for the titanium alloy Ti6Al4V. The experiments were carried out for specimens with a diameter of 10 mm and were performed at 900 RPM. Three types of geometry were proposed for the RFW process: flat on flat, flat on 37.5° and flat on 45°. Based on these results, the best tested flat geometry was selected from the perspective of quality and economic efficiency. The welded joints were subjected to microstructural analysis, tensile testing, microhardness testing, and fractography, as well as spectral analysis of the fracture surface and EDS map analysis of oxygen. The flat geometry of the contact surface resulted in the least saturation with interstitial elements from the atmosphere. Fracturing in the RFW zone led to a brittle fracture with a certain proportion of plastic deformation. A pure ductile fracture occurred in specimens fractured in the HAZ region, where the difference in UTS values compared to specimens fractured by a brittle fracture mechanism was not significant. The average UTS value was 478 MPa.

4.
Materials (Basel) ; 16(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36676621

ABSTRACT

The paper presents and analyzes the results of experimental tests performed on two non-alloy low carbon steels (1.1141 and 1.0122) in cases of their exposure to impact fracture energy and uniaxial high cyclic mechanical stress-controlled fatigue. The experimental results provide insight into the changes in the Charpy impact fracture energy of the V-notched test specimen that occur as a result of temperature changes. The experimental results also provide insight into the mechanical response of the tested materials to mechanical uniaxial high-cycle fatigue at room temperature in an air atmosphere and at different applied stress ratios. Material fatigue tests refer to symmetric (R = -1), asymmetric (R = -0.5) and pulsating tensile (R = 0) cycles. The test results are shown in the S-N diagrams and refer to the highest applied stresses in relation to the number of failures at a given stress ratio. Using the modified staircase method, the fatigue limit (endurance limit) was calculated for both tested materials at each prescribed stress ratio. For both tested steel alloys, and at prescribed stress ratios, the fatigue limit levels (σ_f) are shown as follows: for steel C15E+C (1.1141)→σf[250.8R=-1; 345.4R=-0.5; 527R=0](MPa); and for steel S235JRC+C (1.0122)→σf[202R=-1; 310R=-0.5; 462R=0](MPa). All uniaxial fatigue tests were performed on unnotched, smooth, highly-polished specimens. The microhardness of both materials was also tested.

5.
Materials (Basel) ; 14(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34640052

ABSTRACT

The objective of this work was to measure and correlate the degree of conversion (DC), mechanical properties and monomer elution from self-, dual- and light-cured core composites. Five samples of each of the following materials were prepared for each test: Clearfil (Core, Photo Core, Automix), Bisco (Core-Flo, Light-Core and Bis-Core). DC was determined using FTIR, compressive and flexural strength and modulus of elasticity using a universal testing machine and microhardness using Vickers hardness. Elution was measured using HPLC. One-way ANOVA with Tukey's post-test and Pearson's correlation were used to statistically analyze the data. DC of Clearfil-Dual (70.1%) and Clerafil-Photo (66.8%) were higher than Clearfil-Self (55.4%) and all Bisco materials (51.4-55.3%). Flexural strength of Clearfilwas higher than that of Bisco composites. The Microhardness of Clearfil-Dual (119.8VHN) and Clearfil-Photo (118.0VHN) were higher compared to other materials. The greatest elution was detected from self-cured materials. DC positively correlated to microhardness and compressive/flexural strength and negatively to BisGMA elution. Clearfil-Photo and Automix showed higher conversion, lower monomer elution and, generally, better mechanical properties. Self-cured composites should not be recommended for routine clinical use as their performance was inferior to dual- and light-cured composites. Microhardness may be used as an indicator of elution.

6.
Materials (Basel) ; 14(5)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33804506

ABSTRACT

Friction stir spot welding is an emerging spot-welding technology that offers opportunities for joining a wide range of materials with minimum energy consumption. To increase productivity, the present work addresses production challenges and aims to find solutions for the lap-welding of multiple ultrathin sheets with maximum productivity. Two convex tools with different edge radii were used to weld four ultrathin sheets of AA5754-H111 alloy each with 0.3 mm thickness. To understand the influence of tool geometries and process parameters, coefficient of friction (CoF), microstructure and mechanical properties obtained with the Vickers microhardness test and the small punch test were analysed. A scanning acoustic microscope was used to assess weld quality. It was found that the increase of tool radius from 15 to 22.5 mm reduced the dwell time by a factor of three. Samples welded with a specific tool were seen to have no delamination and improved mechanical properties due to longer stirring time. The rotational speed was found to be the most influential parameter in governing the weld shape, CoF, microstructure, microhardness and weld efficiency. Low rotational speeds caused a 14.4% and 12.8% improvement in joint efficiency compared to high rotational speeds for both tools used in this investigation.

7.
Materials (Basel) ; 14(7)2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33800700

ABSTRACT

Several applications, where extreme conditions occur, require the use of alloys often containing many critical elements. Due to the ever increasing prices of critical raw materials (CRMs) linked to their high supply risk, and because of their fundamental and large utilization in high tech products and applications, it is extremely important to find viable solutions to save CRMs usage. Apart from increasing processes' efficiency, substitution, and recycling, one of the alternatives to preserve an alloy and increase its operating lifetime, thus saving the CRMs needed for its manufacturing, is to protect it by a suitable coating or a surface treatment. This review presents the most recent trends in coatings for application in high temperature alloys for aerospace engines. CRMs' current and future saving scenarios in the alloys and coatings for the aerospace engine are also discussed. The overarching aim of this paper is to raise awareness on the CRMs issue related to the alloys and coating for aerospace, suggesting some mitigation measures without having the ambition nor to give a complete overview of the topic nor a turnkey solution.

8.
Materials (Basel) ; 14(4)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33672909

ABSTRACT

The term "critical raw materials" (CRMs) refers to various metals and nonmetals that are crucial to Europe's economic progress. Modern technologies enabling effective use and recyclability of CRMs are in critical demand for the EU industries. The use of CRMs, especially in the fields of biomedicine, aerospace, electric vehicles, and energy applications, is almost irreplaceable. Additive manufacturing (also referred to as 3D printing) is one of the key enabling technologies in the field of manufacturing which underpins the Fourth Industrial Revolution. 3D printing not only suppresses waste but also provides an efficient buy-to-fly ratio and possesses the potential to entirely change supply and distribution chains, significantly reducing costs and revolutionizing all logistics. This review provides comprehensive new insights into CRM-containing materials processed by modern additive manufacturing techniques and outlines the potential for increasing the efficiency of CRMs utilization and reducing the dependence on CRMs through wider industrial incorporation of AM and specifics of powder bed AM methods making them prime candidates for such developments.

9.
Materials (Basel) ; 13(24)2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33302442

ABSTRACT

Using adhesives for connection technology has many benefits. It is cost-efficient, fast, and allows homogeneous stress distribution between the bonded surfaces. This paper gives an overview on the current state of knowledge regarding the technologically important area of adhesive materials, as well as on emergent related technologies. It is expected to fill some of the technological gaps between the existing literature and industrial reality, by focusing at opportunities and challenges in the adhesives sector, on sustainable and eco-friendly chemistries that enable bio-derived adhesives, recycling and debonding, as well as giving a brief overview on the surface treatment approaches involved in the adhesive application process, with major focus on metal and polymer matrix composites. Finally, some thoughts on the connection between research and development (R&D) efforts, industry standards and regulatory aspects are given. It contributes to bridge the gap between industry and research institutes/academy. Examples from the aeronautics industry are often used since many technological advances in this industry are innovation precursors for other industries. This paper is mainly addressed to chemists, materials scientists, materials engineers, and decision-makers.

10.
Materials (Basel) ; 13(20)2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33053747

ABSTRACT

Austenitic stainless steels represent a significant aerospace material, being used for various castings, structural components, landing gear components, afterburners, exhaust components, engine parts, and fuel tanks. The most common joining process is tungsten inert gas (TIG) welding, which possesses many advantages such as suitability to weld a wide range of ferrous and non-ferrous metals and alloys, providing high quality welds with good mechanical properties. Its major disadvantage is low productivity due to low penetration and welding speed. This can be overcome by introducing an activating flux before welding. The activating flux reverses the material flow of the weld pool, significantly increasing penetration. Therefore, shielding gas consumption is reduced and welding without a consumable is enabled. However, the consumable in conventional TIG also enables the conditioning of the mechanical properties of welds. In this study, Si and Ti metallic oxide nanoparticles were used to increase the weld penetration depth, while bend testing, tensile, and impact toughness were determined to evaluate the mechanical properties of welds. Furthermore, optical emission spectroscopy, light, and scanning electron microscope were used to determine the chemical compositions and microstructures of the welds. Chemical compositions and weld mechanical properties were similar in all specimens. The highest tensile and impact properties were obtained with the specimen welded with the flux containing 20% TiO2 and 80% SiO2 nanoparticles. Although lower than those of the base metal, they were well within the nominal base metal mechanical properties.

11.
Materials (Basel) ; 10(3)2017 Mar 13.
Article in English | MEDLINE | ID: mdl-28772645

ABSTRACT

In Europe, many technologies with high socio-economic benefits face materials requirements that are often affected by demand-supply disruption. This paper offers an overview of critical raw materials in high value alloys and metal-matrix composites used in critical applications, such as energy, transportation and machinery manufacturing associated with extreme working conditions in terms of temperature, loading, friction, wear and corrosion. The goal is to provide perspectives about the reduction and/or substitution of selected critical raw materials: Co, W, Cr, Nb and Mg.

12.
J Prosthet Dent ; 111(4): 327-34, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24360017

ABSTRACT

STATEMENT OF PROBLEM: Poly(methyl-methacrylate) (PMMA) represents the most popular current denture material. However, its major drawbacks are insufficient ductility and strength. PURPOSE: The purpose of this study was to improve the mechanical properties of PMMA in denture base application by adding small quantities of nanosilica. MATERIAL AND METHOD: Silica nanoparticles were added to the liquid component of the tested materials. The standard heat polymerizing procedure was followed to obtain 6 PMMA--silicon dioxide (/SiO2) concentrations (0.023%, 0.046%, 0.091%, 0.23%, 0.46%, and 0.91% by volume). Microhardness and fracture toughness of each set of specimens was compared with the unmodified specimens. Furthermore, differential scanning calorimetry and scanning electron microscopy analyses were conducted, and the results obtained were correlated with the results of mechanical properties. RESULTS: It was found that the maximum microhardness and fracture toughness values of the materials tested were obtained for the lowest nanosilica content. A nanosilica content of 0.023% resulted in an almost unchanged glass transition temperature (Tg), whereas the maximum amount of nanosilica induced a considerable increase in Tg. A higher Tg indicated the possible existence of a thicker interfacial layer caused by the chain immobility due to the presence of the particles. However, scanning electron microscopy results demonstrated extensive agglomeration at 0.91% nanosilica, which may have prevented the formation of a homogenous reinforced field. At a nanosilica content of 0.023%, no agglomeration was observed, which probably influenced a more homogenous distribution of nanoparticles as well as uniform reinforcing fields. CONCLUSIONS: Low nanoparticle content yields superior mechanical properties along with the lower cost of nanocomposite synthesis.


Subject(s)
Dental Materials/chemistry , Denture Bases , Nanocomposites/chemistry , Polymethyl Methacrylate/chemistry , Silicon Dioxide/chemistry , Calorimetry, Differential Scanning , Cross-Linking Reagents/chemistry , Glass/chemistry , Hardness , Hot Temperature , Humans , Hydrophobic and Hydrophilic Interactions , Materials Testing , Methacrylates/chemistry , Methylmethacrylate/chemistry , Microscopy, Electron, Scanning , Nanoparticles/chemistry , Stress, Mechanical , Surface Properties , Transition Temperature
13.
Vojnosanit Pregl ; 70(5): 477-83, 2013 May.
Article in English | MEDLINE | ID: mdl-23789287

ABSTRACT

BACKGROUND/AIM: The main drawback of flowable dental composite resin is low strength compared to conventional composite resin, due to a low amount of filler, neccessary for achieving low viscosity and ease of handling. The aim of this study was to improve mechanical properties of flowable dental composite resin by adding small amount of nanoparticles, which would not compromise handling properties. METHODS: A commercially available flowable dental composite resin material was mixed with 7 nm aftertreated hydrophobic fumed silica and cured by an UV lamp. Four sets of samples were made: control sample (unmodified), the sample containing 0.05%, 0.2% and 1% nanosilica. Flexural modulus, flexural strength and microhardness were tested. One-way ANOVA followed by Tukey's test with the significance value of p < 0.05 was performed to statistically analyze the obtained results. Furthermore, differential scanning calorimetry (DSC) and SEM analysis were performed. To asses handling properties, slumping resistance was determined. RESULTS: It was found that 0.05% is the most effective nanosilica content. All the tested mechanical properties were improved by a significant margin. On the other hand, when 0.2% and 1% nanosilica content was tested, different results were obtained, some of the mechanical properties even dropped, while some were insignificantly improved. The difference between slumping resistance of unmodified and modified samples was found to be statistically insignificant. CONCLUSIONS: Low nanosilica addition proved more effective in improving mechanical properties compared to higher additions. Furthermore, handling properties are unaffected by nanosilica addition.


Subject(s)
Acrylic Resins , Composite Resins , Nanoparticles , Polyurethanes , Silicon Dioxide , Biomechanical Phenomena , In Vitro Techniques , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...