Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 15(6): 408, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862470

ABSTRACT

The cavity-creating p53 cancer mutation Y220C is an ideal paradigm for developing small-molecule drugs based on protein stabilization. Here, we have systematically analyzed the structural and stability effects of all oncogenic Tyr-to-Cys mutations (Y126C, Y163C, Y205C, Y220C, Y234C, and Y236C) in the p53 DNA-binding domain (DBD). They were all highly destabilizing, drastically lowering the melting temperature of the protein by 8-17 °C. In contrast, two non-cancerous mutations, Y103C and Y107C, had only a moderate effect on protein stability. Differential stabilization of the mutants upon treatment with the anticancer agent arsenic trioxide and stibogluconate revealed an interesting proximity effect. Crystallographic studies complemented by MD simulations showed that two of the mutations, Y234C and Y236C, create internal cavities of different size and shape, whereas the others induce unique surface lesions. The mutation-induced pockets in the Y126C and Y205C mutant were, however, relatively small compared with that of the already druggable Y220C mutant. Intriguingly, our structural studies suggest a pronounced plasticity of the mutation-induced pocket in the frequently occurring Y163C mutant, which may be exploited for the development of small-molecule stabilizers. We point out general principles for reactivating thermolabile cancer mutants and highlight special cases where mutant-specific drugs are needed for the pharmacological rescue of p53 function in tumors.


Subject(s)
Mutation , Neoplasms , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Humans , Mutation/genetics , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Arsenic Trioxide/pharmacology , Molecular Dynamics Simulation , Protein Stability/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
2.
J Med Chem ; 67(11): 8609-8629, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38780468

ABSTRACT

Vaccinia-related kinase 1 (VRK1) and the δ and ε isoforms of casein kinase 1 (CK1) are linked to various disease-relevant pathways. However, the lack of tool compounds for these kinases has significantly hampered our understanding of their cellular functions and therapeutic potential. Here, we describe the structure-based development of potent inhibitors of VRK1, a kinase highly expressed in various tumor types and crucial for cell proliferation and genome integrity. Kinome-wide profiling revealed that our compounds also inhibit CK1δ and CK1ε. We demonstrate that dihydropteridinones 35 and 36 mimic the cellular outcomes of VRK1 depletion. Complementary studies with existing CK1δ and CK1ε inhibitors suggest that these kinases may play overlapping roles in cell proliferation and genome instability. Together, our findings highlight the potential of VRK1 inhibition in treating p53-deficient tumors and possibly enhancing the efficacy of existing cancer therapies that target DNA stability or cell division.


Subject(s)
Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Pteridines , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Pteridines/pharmacology , Pteridines/chemistry , Pteridines/chemical synthesis , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Cell Proliferation/drug effects , Structure-Activity Relationship , Casein Kinase Idelta/antagonists & inhibitors , Casein Kinase Idelta/metabolism , Casein Kinase 1 epsilon/antagonists & inhibitors , Casein Kinase 1 epsilon/metabolism , Cell Line, Tumor
3.
J Med Chem ; 67(5): 3813-3842, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38422480

ABSTRACT

Mammalian STE20-like (MST) kinases 1-4 play key roles in regulating the Hippo and autophagy pathways, and their dysregulation has been implicated in cancer development. In contrast to the well-studied MST1/2, the roles of MST3/4 are less clear, in part due to the lack of potent and selective inhibitors. Here, we re-evaluated literature compounds, and used structure-guided design to optimize the p21-activated kinase (PAK) inhibitor G-5555 (8) to selectively target MST3/4. These efforts resulted in the development of MR24 (24) and MR30 (27) with good kinome-wide selectivity and high cellular potency. The distinct cellular functions of closely related MST kinases can now be elucidated with subfamily-selective chemical tool compounds using a combination of the MST1/2 inhibitor PF-06447475 (2) and the two MST3/4 inhibitors developed. We found that MST3/4-selective inhibition caused a cell-cycle arrest in the G1 phase, whereas MST1/2 inhibition resulted in accumulation of cells in the G2/M phase.


Subject(s)
Protein Serine-Threonine Kinases , p21-Activated Kinases , Animals , Protein Serine-Threonine Kinases/metabolism , Mammals/metabolism
4.
ACS Chem Biol ; 19(2): 266-279, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38291964

ABSTRACT

Bromodomain and extra-terminal domain (BET) proteins and histone deacetylases (HDACs) are prime targets in cancer therapy. Recent research has particularly focused on the development of dual BET/HDAC inhibitors for hard-to-treat tumors, such as pancreatic cancer. Here, we developed a new series of potent dual BET/HDAC inhibitors by choosing starting scaffolds that enabled us to optimally merge the two functionalities into a single compound. Systematic structure-guided modification of both warheads then led to optimized binders that were superior in potency to both parent compounds, with the best molecules of this series binding to both BRD4 bromodomains as well as HDAC1/2 with EC50 values in the 100 nM range in cellular NanoBRET target engagement assays. For one of our lead molecules, we could also show the selective inhibition of HDAC1/2 over all other zinc-dependent HDACs. Importantly, this on-target activity translated into promising efficacy in pancreatic cancer and NUT midline carcinoma cells. Our lead molecules effectively blocked histone H3 deacetylation in pancreatic cancer cells and upregulated the tumor suppressor HEXIM1 and proapoptotic p57, both markers of BET inhibition. In addition, they have the potential to downregulate the oncogenic drivers of NUT midline carcinoma, as demonstrated for MYC and TP63 mRNA levels. Overall, this study expands the portfolio of available dual BET/class I HDAC inhibitors for future translational studies in different cancer models.


Subject(s)
Antineoplastic Agents , Carcinoma , Pancreatic Neoplasms , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Pharmacophore , Pancreatic Neoplasms/drug therapy , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , RNA-Binding Proteins , Bromodomain Containing Proteins , Cell Cycle Proteins/metabolism
5.
J Med Chem ; 67(1): 674-690, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38126712

ABSTRACT

MST1, MST2, MST3, MST4, and YSK1 are conserved members of the mammalian sterile 20-like serine/threonine (MST) family that regulate cellular functions such as proliferation and migration. The MST3 isozyme plays a role in regulating cell growth and apoptosis, and its dysregulation has been linked to high-grade tumors. To date, there are no isoform-selective inhibitors that could be used for validating the role of MST3 in tumorigenesis. We designed a series of 3-aminopyrazole-based macrocycles based on the structure of a promiscuous inhibitor. By varying the moieties targeting the solvent-exposed region and optimizing the linker, macrocycle JA310 (21c) was synthesized. JA310 exhibited high cellular potency for MST3 (EC50 = 106 nM) and excellent kinome-wide selectivity. The crystal structure of the MST3-JA310 complex provided intriguing insights into the binding mode, which is associated with large-scale structural rearrangements. In summary, JA310 demonstrates the utility of macrocyclization for the design of highly selective inhibitors and presents the first chemical probe for MST3.


Subject(s)
Apoptosis , Protein Serine-Threonine Kinases , Animals , Protein Serine-Threonine Kinases/metabolism , Phosphorylation , Mammals/metabolism
6.
Bioconjug Chem ; 34(9): 1679-1687, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37657082

ABSTRACT

Protein arylation has attracted much attention for developing new classes of bioconjugates with improved properties. Here, we have evaluated 2-sulfonylpyrimidines as covalent warheads for the mild, chemoselective, and metal free cysteine S-arylation. 2-Sulfonylpyrimidines react rapidly with cysteine, resulting in stable S-heteroarylated adducts at neutral pH. Fine tuning the heterocyclic core and exocyclic leaving group allowed predictable SNAr reactivity in vitro, covering >9 orders of magnitude. Finally, we achieved fast chemo- and regiospecific arylation of a mutant p53 protein and confirmed arylation sites by protein X-ray crystallography. Hence, we report the first example of a protein site specifically S-arylated with iodo-aromatic motifs. Overall, this study provides the most comprehensive structure-reactivity relationship to date on heteroaryl sulfones and highlights 2-sulfonylpyrimidine as a synthetically tractable and protein compatible covalent motif for targeting reactive cysteines, expanding the arsenal of tunable warheads for modern covalent ligand discovery.


Subject(s)
Cysteine , Sulfones , Mutant Proteins , Crystallography, X-Ray
7.
Eur J Med Chem ; 254: 115347, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37094449

ABSTRACT

Salt-inducible kinases 1-3 (SIK1-3) are key regulators of the LKB1-AMPK pathway and play an important role in cellular homeostasis. Dysregulation of any of the three isoforms has been associated with tumorigenesis in liver, breast, and ovarian cancers. We have recently developed the dual pan-SIK/group I p21-activated kinase (PAK) chemical probe MRIA9. However, inhibition of p21-activated kinases has been associated with cardiotoxicity in vivo, which complicates the use of MRIA9 as a tool compound. Here, we present a structure-based approach involving the back-pocket and gatekeeper residues, for narrowing the selectivity of pyrido[2,3-d]pyrimidin-7(8H)-one-based inhibitors towards SIK kinases, eliminating PAK activity. Optimization was guided by high-resolution crystal structure analysis and computational methods, resulting in a pan-SIK inhibitor, MR22, which no longer exhibited activity on STE group kinases and displayed excellent selectivity in a representative kinase panel. MR22-dependent SIK inhibition led to centrosome dissociation and subsequent cell-cycle arrest in ovarian cancer cells, as observed with MRIA9, conclusively linking these phenotypic effects to SIK inhibition. Taken together, MR22 represents a valuable tool compound for studying SIK kinase function in cells.


Subject(s)
AMP-Activated Protein Kinases , Protein Serine-Threonine Kinases , AMP-Activated Protein Kinases/metabolism , Liver/metabolism , Protein Isoforms , Protein Kinase Inhibitors/pharmacology
8.
ACS Pharmacol Transl Sci ; 5(11): 1169-1180, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36407959

ABSTRACT

The tumor suppressor protein p53 is inactivated in the majority of human cancers and remains a prime target for developing new drugs to reactivate its tumor suppressing activity for anticancer therapies. The oncogenic p53 mutant Y220C accounts for approximately 125,000 new cancer cases per annum and is one of the most prevalent p53 mutants overall. It harbors a narrow, mutationally induced pocket at the surface of the DNA-binding domain that destabilizes p53, leading to its rapid denaturation and aggregation. Here, we present the structure-guided development of high-affinity small molecules stabilizing p53-Y220C in vitro, along with the synthetic routes developed in the process, in vitro structure-activity relationship data, and confirmation of their binding mode by protein X-ray crystallography. We disclose two new chemical probes displaying sub-micromolar binding affinity in vitro, marking an important milestone since the discovery of the first small-molecule ligand of Y220C in 2008. New chemical probe JC744 displayed a K d = 320 nM, along with potent in vitro protein stabilization. This study, therefore, represents a significant advance toward high-affinity Y220C ligands for clinical evaluation.

9.
Cell Death Dis ; 13(3): 214, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35256607

ABSTRACT

The extremophile Alvinella pompejana, an annelid worm living on the edge of hydrothermal vents in the Pacific Ocean, is an excellent model system for studying factors that govern protein stability. Low intrinsic stability is a crucial factor for the susceptibility of the transcription factor p53 to inactivating mutations in human cancer. Understanding its molecular basis may facilitate the design of novel therapeutic strategies targeting mutant p53. By analyzing expressed sequence tag (EST) data, we discovered a p53 family gene in A. pompejana. Protein crystallography and biophysical studies showed that it has a p53/p63-like DNA-binding domain (DBD) that is more thermostable than all vertebrate p53 DBDs tested so far, but not as stable as that of human p63. We also identified features associated with its increased thermostability. In addition, the A. pompejana homolog shares DNA-binding properties with human p53 family DBDs, despite its evolutionary distance, consistent with a potential role in maintaining genome integrity. Through extensive structural and phylogenetic analyses, we could further trace key evolutionary events that shaped the structure, stability, and function of the p53 family DBD over time, leading to a potent but vulnerable tumor suppressor in humans.


Subject(s)
Polychaeta , Tumor Suppressor Protein p53 , Animals , DNA/genetics , DNA/metabolism , Phylogeny , Polychaeta/chemistry , Polychaeta/genetics , Polychaeta/metabolism , Protein Domains , Tumor Suppressor Protein p53/metabolism
10.
Curr Pharm Des ; 26(8): 838-866, 2020.
Article in English | MEDLINE | ID: mdl-32039675

ABSTRACT

In this report, we extend the SAR analysis of a number of lipophilic guanylhydrazone analogues with respect to in vitro growth inhibition of Trypanosoma brucei and Trypanosoma cruzi. Sleeping sickness and Chagas disease, caused by the tropical parasites T. brucei and T. cruzi, constitute a significant socioeconomic burden in low-income countries of sub-Saharan Africa and Latin America, respectively. Drug development is underfunded. Moreover, current treatments are outdated and difficult to administer, while drug resistance is an emerging concern. The synthesis of adamantane-based compounds that have potential as antitrypanosomal agents is extensively reviewed. The critical role of the adamantane ring was further investigated by synthesizing and testing a number of novel lipophilic guanylhydrazones. The introduction of hydrophobic bulky substituents onto the adamantane ring generated the most active analogues, illustrating the synergistic effect of the lipophilic character of the C1 side chain and guanylhydrazone moiety on trypanocidal activity. The n-decyl C1-substituted compound G8 proved to be the most potent adamantane derivative against T. brucei with activity in the nanomolar range (EC50=90 nM). Molecular simulations were also performed to better understand the structure-activity relationships between the studied guanylhydrazone analogues and their potential enzyme target.


Subject(s)
Mitoguazone/analogs & derivatives , Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosoma cruzi , Mitoguazone/pharmacology , Structure-Activity Relationship , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma cruzi/drug effects
11.
Cancers (Basel) ; 12(1)2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31878315

ABSTRACT

The genome is exposed daily to many deleterious factors. Ubiquitination is a mechanism that regulates several crucial cellular functions, allowing cells to react upon various stimuli in order to preserve their homeostasis. Ubiquitin ligases act as specific regulators and actively participate among others in the DNA damage response (DDR) network. UBE4B is a newly identified member of E3 ubiquitin ligases that appears to be overexpressed in several human neoplasms. The aim of this review is to provide insights into the role of UBE4B ubiquitin ligase in DDR and its association with p53 expression, shedding light particularly on the molecular mechanisms of carcinogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...