Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Appl Physiol ; 121(4): 1099-1110, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33458800

ABSTRACT

PURPOSE: Neural drive and contractile properties are well-defined physiological determinants of explosive strength, the influence of muscle architecture and related morphology on explosive strength is poorly understood. The aim of this study was to examine the relationships between Quadriceps muscle architecture (pennation angle [ΘP] and fascicle length [FL]) and size (e.g., volume; QVOL), as well as patellar tendon moment arm (PTMA) with voluntary and evoked explosive knee extension torque in 53 recreationally active young men. METHOD: Following familiarisation, explosive voluntary torque at 50 ms intervals from torque onset (T50, T100, T150), evoked octet at 50 ms (8 pulses at 300-Hz; evoked T50), as well as maximum voluntary torque, were assessed on two occasions with isometric dynamometry. B-mode ultrasound was used to assess ΘP and FL at ten sites throughout the quadriceps (2-3 sites) per constituent muscle. Muscle size (QVOL) and PTMA were quantified using 1.5 T MRI. RESULT: There were no relationships with absolute early phase explosive voluntary torque (≤ 50 ms), but θP (weak), QVOL (moderate to strong) and PTMA (weak) were related to late phase explosive voluntary torque (≥ 100 ms). Regression analysis revealed only QVOL was an independent variable contributing to the variance in T100 (34%) and T150 (54%). Evoked T50 was also related to QVOL and θP. When explosive strength was expressed relative to MVT there were no relationships observed. CONCLUSION: It is likely that the weak associations of θP and PTMA with late phase explosive voluntary torque was via their association with MVT/QVOL rather than as a direct determinant.


Subject(s)
Isometric Contraction , Muscle Strength , Muscle, Skeletal/physiology , Adult , Humans , Male , Muscle, Skeletal/anatomy & histology , Torque
2.
Eur J Appl Physiol ; 119(8): 1735-1746, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31115654

ABSTRACT

PURPOSE: The present study compared knee extension explosive isometric torque, neuromuscular activation, and intrinsic contractile properties at five different knee-joint angles (35°, 50°, 65°, 80°, and 95°; 0° = full knee extension). METHODS: Twenty-eight young healthy males performed two experimental sessions each involving: 2 maximum, and 6-8 explosive voluntary contractions at each angle; to measure maximum voluntary torque (MVT), explosive voluntary torque (EVT; 50-150 ms after contraction onset) and quadriceps surface EMG (QEMG, 0-50, 0-100, and 0-150 ms after EMG onset during the explosive contractions). Maximum twitch and M-wave (MMAX) responses as well as octet contractions were evoked with femoral nerve stimulation at each angle. RESULTS: Absolute MVT and EVT showed an inverted 'U' relationship with higher torque at intermediate angles. There were no differences between knee-joint angles for relative EVT (%MVT) during the early phase (≤ 75 ms) of contraction and only subtle differences during the late phase (≥ 75 ms) of contraction (≤ 11%). Neuromuscular activation during explosive contractions was greater at more flexed than extended positions, and this was also the case during MVT. Whilst relative twitch torque (%MVT) was higher at knee flexed positions (P ≤ 0.001), relative octet torque (%MVT) was higher at knee extended positions (P ≤ 0.001). CONCLUSION: Relative EVT was broadly similar between joint angles, likely because neuromuscular activation during both explosive and plateau (maximum) phases of contraction changed proportionally, and due to the opposing changes in twitch and octet evoked responses with joint angle.


Subject(s)
Knee Joint/physiology , Knee/physiology , Muscle Contraction , Muscle Strength , Range of Motion, Articular , Adult , Humans , Male , Torque
3.
Acta Physiol (Oxf) ; 222(4): e13019, 2018 04.
Article in English | MEDLINE | ID: mdl-29253326

ABSTRACT

AIM: The potential for tendinous tissues to adapt to functional overload, especially after several years of exposure to heavy-resistance training, is largely unexplored. This study compared the morphological and mechanical characteristics of the patellar tendon and knee extensor tendon-aponeurosis complex between young men exposed to long-term (4 years; n = 16), short-term (12 weeks; n = 15) and no (untrained controls; n = 39) functional overload in the form of heavy-resistance training. METHODS: Patellar tendon cross-sectional area, vastus lateralis aponeurosis area and quadriceps femoris volume, plus patellar tendon stiffness and Young's modulus, and tendon-aponeurosis complex stiffness, were quantified with MRI, dynamometry and ultrasonography. RESULTS: As expected, long-term trained had greater muscle strength and volume (+58% and +56% vs untrained, both P < .001), as well as a greater aponeurosis area (+17% vs untrained, P < .01), but tendon cross-sectional area (mean and regional) was not different between groups. Only long-term trained had reduced patellar tendon elongation/strain over the whole force/stress range, whilst both short-term and long-term overload groups had similarly greater stiffness/Young's modulus at high force/stress (short-term +25/22%, and long-term +17/23% vs untrained; all P < .05). Tendon-aponeurosis complex stiffness was not different between groups (ANOVA, P = .149). CONCLUSION: Despite large differences in muscle strength and size, years of resistance training did not induce tendon hypertrophy. Both short-term and long-term overload demonstrated similar increases in high-force mechanical and material stiffness, but reduced elongation/strain over the whole force/stress range occurred only after years of overload, indicating a force/strain specific time-course to these adaptations.


Subject(s)
Adaptation, Physiological/physiology , Aponeurosis/physiology , Resistance Training/methods , Tendons/physiology , Adult , Aponeurosis/pathology , Elastic Modulus , Humans , Hypertrophy/etiology , Knee Joint , Male , Muscle, Skeletal/physiology , Resistance Training/adverse effects , Tendons/pathology , Young Adult
4.
Eur J Appl Physiol ; 117(6): 1085-1094, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28391392

ABSTRACT

PURPOSE: The reliability of surface electromyography (sEMG) is typically modest even with rigorous methods, and therefore further improvements in sEMG reliability are desirable. This study compared the between-session reliability (both within participant absolute reliability and between-participant relative reliability) of sEMG amplitude from single vs. average of two distinct recording sites, for individual muscle (IM) and whole quadriceps (WQ) measures during voluntary and evoked contractions. METHODS: Healthy males (n = 20) performed unilateral isometric knee extension contractions: voluntary maximum and submaximum (60%), as well as evoked twitch contractions on two separate days. sEMG was recorded from two distinct sites on each superficial quadriceps muscle. RESULTS: Averaging two recording sites vs. using single site measures improved reliability for IM and WQ measurements during voluntary (16-26% reduction in within-participant coefficient of variation, CVW) and evoked contractions (40-56% reduction in CVW). CONCLUSIONS: For sEMG measurements from large muscles, averaging the recording of two distinct sites is recommended as it improves within-participant reliability. This improved sensitivity has application to clinical and research measurement of sEMG amplitude.


Subject(s)
Electromyography/methods , Muscle Contraction , Quadriceps Muscle/physiology , Adult , Electromyography/instrumentation , Electromyography/standards , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...