Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
J Autism Dev Disord ; 52(2): 700-713, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33811283

ABSTRACT

Neuroeconomics paradigms have demonstrated that learning about another's beliefs can make you more like them (i.e., contagion). Due to social deficits in autism, it is possible that autistic individuals will be immune to contagion. We fit Bayesian computational models to a temporal discounting task, where participants made decisions for themselves before and after learning the distinct preferences of two others. Two independent neurotypical samples (N = 48; N = 98) both showed a significant contagion effect; however the strength of contagion was unrelated to autistic traits. Equivalence tests showed autistic (N = 12) and matched neurotypical N = 12) samples had similar levels of contagion and accuracy when learning about others. Despite social impairments being at the core of autistic symptomatology, contagion of value preferences appears to be intact.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Delay Discounting , Adult , Bayes Theorem , Humans , Learning
2.
Neuroimage ; 228: 117685, 2021 03.
Article in English | MEDLINE | ID: mdl-33359344

ABSTRACT

Evolution, as we currently understand it, strikes a delicate balance between animals' ancestral history and adaptations to their current niche. Similarities between species are generally considered inherited from a common ancestor whereas observed differences are considered as more recent evolution. Hence comparing species can provide insights into the evolutionary history. Comparative neuroimaging has recently emerged as a novel subdiscipline, which uses magnetic resonance imaging (MRI) to identify similarities and differences in brain structure and function across species. Whereas invasive histological and molecular techniques are superior in spatial resolution, they are laborious, post-mortem, and oftentimes limited to specific species. Neuroimaging, by comparison, has the advantages of being applicable across species and allows for fast, whole-brain, repeatable, and multi-modal measurements of the structure and function in living brains and post-mortem tissue. In this review, we summarise the current state of the art in comparative anatomy and function of the brain and gather together the main scientific questions to be explored in the future of the fascinating new field of brain evolution derived from comparative neuroimaging.


Subject(s)
Anatomy, Comparative/trends , Biological Evolution , Brain/anatomy & histology , Brain/physiology , Neuroimaging/trends , Anatomy, Comparative/methods , Animals , Humans , Neuroimaging/methods , Primates
3.
Neuroscientist ; 27(2): 159-183, 2021 04.
Article in English | MEDLINE | ID: mdl-32507096

ABSTRACT

Human behavior is strongly influenced by our motivation to establish social relationships and maintain them throughout life. Despite the importance of social behavior across species, it is still unclear how neural mechanisms drive social actions. Rodent models have been used for decades to unravel the neural pathways and substrates of social interactions. With the advent of novel approaches to selectively modulate brain circuits in animal models, unprecedented testing of brain regions and neuromodulators that encode social information can be achieved. However, it is unclear which classes of social behavior and related neural circuits can be generalized across species and which are unique to humans. There is a growing need to define a unified blueprint of social brain systems. Here, we review human and rodent literature on the brain's social actuators, specifically focusing on social motivation. We discuss the potential of implementing multimodal neuroimaging to guide us toward a consensus of brain areas and circuits for social behavior regulation. Understanding the circuital similarity and diversity is the critical step to improve the translation of research findings from rodents to humans.


Subject(s)
Brain/physiology , Motivation/physiology , Nerve Net/physiology , Reward , Social Behavior , Animals , Brain/diagnostic imaging , Humans , Nerve Net/diagnostic imaging , Neuroimaging/methods
4.
Dev Sci ; 24(4): e13075, 2021 07.
Article in English | MEDLINE | ID: mdl-33305510

ABSTRACT

Adolescence is a period of heightened exploration relative to adulthood and childhood. This predisposition has been linked with negative behaviours related to risk-taking, including dangerous driving, substance misuse and risky sexual practices. However, recent models have argued that adolescents' heightened exploration serves a functional purpose within the lifespan, allowing adolescents to develop experiential knowledge of their surroundings. Yet, there is limited evidence that heightened exploration in adolescence is associated with positive outcomes. To address this, the present pre-registered study utilised a foraging paradigm with a sample of adolescents aged 16-17 (N = 68) and of adults aged 21 and above (N = 69). Participants completed a patch foraging task, which required them to choose between exploiting a known resource which gradually yields fewer rewards, and exploring a novel, unknown resource with a fresh distribution of rewards. Findings demonstrated that adolescents explored more than adults, which - in the context of the current task-represented more optimal patch foraging behaviour. These findings indicate that adolescents' heightened exploration can be beneficial, as they were able to effectively navigate unknown environments and accrue rewards more successfully than adults. This provides evidence that heightened exploration in adolescence, relative to adulthood, can lead to positive outcomes and contributes to our understanding of the role increased novelty-seeking plays at this point in the lifespan.


Subject(s)
Adolescent Behavior , Risk-Taking , Adolescent , Adult , Child , Decision Making , Humans , Reward
5.
Elife ; 92020 04 16.
Article in English | MEDLINE | ID: mdl-32298231

ABSTRACT

With the increasing necessity of animal models in biomedical research, there is a vital need to harmonise findings across species by establishing similarities and differences in rodent and primate neuroanatomy. Using connectivity fingerprint matching, we compared cortico-striatal circuits across humans, non-human primates, and mice using resting-state fMRI data in all species. Our results suggest that the connectivity patterns for the nucleus accumbens and cortico-striatal motor circuits (posterior/lateral putamen) were conserved across species, making them reliable targets for cross-species comparisons. However, a large number of human and macaque striatal voxels were not matched to any mouse cortico-striatal circuit (mouse->human: 85% unassigned; mouse->macaque 69% unassigned; macaque->human; 31% unassigned). These unassigned voxels were localised to the caudate nucleus and anterior putamen, overlapping with executive function and social/language regions of the striatum and connected to prefrontal-projecting cerebellar lobules and anterior prefrontal cortex, forming circuits that seem to be unique for non-human primates and humans.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Models, Animal , Neural Pathways/anatomy & histology , Neural Pathways/physiology , Animals , Humans , Macaca , Magnetic Resonance Imaging , Mice , Primates , Species Specificity
6.
Elife ; 82019 09 16.
Article in English | MEDLINE | ID: mdl-31524600

ABSTRACT

Motor fatigability emerges when demanding tasks are executed over an extended period of time. Here, we used repetitive low-force movements that cause a gradual reduction in movement speed (or 'motor slowing') to study the central component of fatigability in healthy adults. We show that motor slowing is associated with a gradual increase of net excitability in the motor network and, specifically, in primary motor cortex (M1), which results from overall disinhibition. Importantly, we link performance decrements to a breakdown of surround inhibition in M1, which is associated with high coactivation of antagonistic muscle groups. This is consistent with the model that a loss of inhibitory control might broaden the tuning of population vectors such that movement patterns become more variable, ill-timed and effortful. We propose that the release of inhibition in M1 is an important mechanism underpinning motor fatigability and, potentially, also pathological fatigue as frequently observed in patients with brain disorders.


Subject(s)
Fatigue , Hand/physiology , Movement , Adult , Electroencephalography , Female , Healthy Volunteers , Humans , Magnetic Resonance Imaging , Male , Models, Neurological , Motor Cortex/physiology , Young Adult
7.
Sci Rep ; 9(1): 8230, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31160679

ABSTRACT

In children with unilateral cerebral palsy (uCP), the corticospinal tract (CST)-wiring patterns may differ (contralateral, ipsilateral or bilateral), partially determining motor deficits. However, the impact of such CST-wiring on functional connectivity remains unknown. Here, we explored resting-state sensorimotor functional connectivity in 26 uCP with periventricular white matter lesions (mean age (standard deviation): 12.87 m (±4.5), CST wiring: 9 contralateral, 9 ipsilateral, 6 bilateral) compared to 60 healthy controls (mean age (standard deviation): 14.54 (±4.8)), and between CST-wiring patterns. Functional connectivity from each M1 to three bilateral sensorimotor regions of interest (primary sensory cortex, dorsal and ventral premotor cortex) and the supplementary motor area was compared between groups (controls vs. uCP; and controls vs. each CST-wiring group). Seed-to-voxel analyses from bilateral M1 were compared between groups. Additionally, relations with upper limb motor deficits were explored. Aberrant sensorimotor functional connectivity seemed to be CST-dependent rather than specific from all the uCP population: in the dominant hemisphere, the contralateral CST group showed increased connectivity between M1 and premotor cortices, whereas the bilateral CST group showed higher connectivity between M1 and somatosensory association areas. These results suggest that functional connectivity of the sensorimotor network is CST-wiring-dependent, although the impact on upper limb function remains unclear.


Subject(s)
Cerebral Palsy/physiopathology , Motor Activity/physiology , Nerve Net/physiopathology , Pyramidal Tracts/physiopathology , Upper Extremity/physiopathology , Adolescent , Child , Female , Functional Laterality , Humans , Male , Young Adult
8.
Neuroimage ; 184: 535-546, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30248455

ABSTRACT

With the greying population, it is increasingly necessary to establish robust and individualized markers of cognitive decline. This requires the combination of well-established neural mechanisms, and the development of increasingly sensitive methodologies. The P300 event-related potential (ERP) has been one of the most heavily investigated neural markers of attention and cognition, and studies have reliably shown that changes in the amplitude and latency of the P300 ERP index the process of aging. However, it is still not clear whether either the P3a or P3b sub-components additionally index levels of cognitive impairment. Here, we used a traditional visual three-stimulus oddball paradigm to investigate both the P3a and P3b ERP components in sixteen young and thirty-four healthy elderly individuals with varying degrees of cognitive ability. EEG data extraction was enhanced through the use of a novel signal processing method called Functional Source Separation (FSS) that increases signal-to-noise ratio by using a weighted sum of all electrodes rather than relying on a single, or a small sub-set, of EEG channels. Whilst clear differences in both the P3a and P3b ERPs were seen between young and elderly groups, only P3b amplitude differentiated older people with low memory performance relative to IQ from those with consistent memory and IQ. A machine learning analysis showed that P3b amplitude (derived from FSS analysis) could accurately categorise high and low performing elderly individuals (78% accuracy). A comparison of Bayes Factors found that differences in cognitive decline within the elderly group were 87 times more likely to be detected using FSS compared to the best performing single electrode (Cz). In conclusion, we propose that P3b amplitude could be a sensitive marker of early, age-independent, episodic memory dysfunction within a healthy older population. In addition, we advocate for the use of more advanced signal processing methods, such as FSS, for detecting subtle neural changes in clinical populations.


Subject(s)
Aging/physiology , Brain Mapping/methods , Brain/physiopathology , Cognitive Dysfunction/physiopathology , Event-Related Potentials, P300/physiology , Adolescent , Adult , Aged , Electroencephalography , Female , Humans , Male , Signal Processing, Computer-Assisted , Support Vector Machine , Young Adult
9.
Elife ; 72018 11 29.
Article in English | MEDLINE | ID: mdl-30489255

ABSTRACT

To date there exists no reliable method to non-invasively upregulate or downregulate the state of the resting human motor system over a large dynamic range. Here we show that an operant conditioning paradigm which provides neurofeedback of the size of motor evoked potentials (MEPs) in response to transcranial magnetic stimulation (TMS), enables participants to self-modulate their own brain state. Following training, participants were able to robustly increase (by 83.8%) and decrease (by 30.6%) their MEP amplitudes. This volitional up-versus down-regulation of corticomotor excitability caused an increase of late-cortical disinhibition (LCD), a TMS derived read-out of presynaptic GABAB disinhibition, which was accompanied by an increase of gamma and a decrease of alpha oscillations in the trained hemisphere. This approach paves the way for future investigations into how altered brain state influences motor neurophysiology and recovery of function in a neurorehabilitation context.


Subject(s)
Brain/physiology , Cortical Excitability/physiology , Mental Disorders/physiopathology , Motor Cortex/physiology , Rest/psychology , Adult , Brain/radiation effects , Electromyography , Evoked Potentials, Motor/physiology , Female , Humans , Male , Mental Disorders/diagnostic imaging , Neurophysiology , Rest/physiology , Transcranial Magnetic Stimulation , Transcriptional Activation/physiology
10.
Psychophysiology ; 55(9): e13091, 2018 09.
Article in English | MEDLINE | ID: mdl-29682753

ABSTRACT

The locus coeruleus (LC) has established functions in both attention and respiration. Good attentional performance requires optimal levels of tonic LC activity, and must be matched to task consistently. LC neurons are chemosensitive, causing respiratory phrenic nerve firing to increase frequency with higher CO2 levels, and as CO2 level varies with the phase of respiration, tonic LC activity should exhibit fluctuations at respiratory frequency. Top-down modulation of tonic LC activity from brain areas involved in attentional regulation, intended to optimize LC firing to suit task requirements, may have respiratory consequences as well, as increases in LC activity influence phrenic nerve firing. We hypothesize that, due to the physiological and functional overlaps of attentional and respiratory functions of the LC, this small neuromodulatory nucleus is ideally situated to act as a mechanism of synchronization between respiratory and attentional systems, giving rise to a low-amplitude oscillation that enables attentional flexibility, but may also contribute to unintended destabilization of attention. Meditative and pranayama practices result in attentional, emotional, and physiological enhancements that may be partially due to the LC's pivotal role as the nexus in this coupled system. We present original findings of synchronization between respiration and LC activity (via fMRI and pupil dilation) and provide evidence of a relationship between respiratory phase modulation and attentional performance. We also present a mathematical dynamical systems model of respiratory-LC-attentional coupling, review candidate neurophysiological mechanisms of changes in coupling dynamics, and discuss implications for attentional theory, meditation, and pranayama, and possible therapeutic applications.


Subject(s)
Attention/physiology , Autonomic Nervous System/physiology , Locus Coeruleus/physiology , Meditation , Respiration , Humans , Magnetic Resonance Imaging , Models, Theoretical , Pupil/physiology , Time Factors
11.
Neuroimage ; 170: 412-423, 2018 04 15.
Article in English | MEDLINE | ID: mdl-28188914

ABSTRACT

Autism Spectrum Disorder (ASD) has been associated with abnormal synaptic development causing a breakdown in functional connectivity. However, when measured at the macro scale using resting state fMRI, these alterations are subtle and often difficult to detect due to the large heterogeneity of the pathology. Recently, we outlined a novel approach for generating robust biomarkers of resting state functional magnetic resonance imaging (RS-fMRI) using connectivity based parcellation of gross morphological structures to improve single-subject reproducibility and generate more robust connectivity fingerprints. Here we apply this novel approach to investigating the organization and connectivity strength of the cortico-striatal system in a large sample of ASD individuals and typically developed (TD) controls (N=130 per group). Our results showed differences in the parcellation of the striatum in ASD. Specifically, the putamen was found to be one single structure in ASD, whereas this was split into anterior and posterior segments in an age, IQ, and head movement matched TD group. An analysis of the connectivity fingerprints revealed that the group differences in clustering were driven by differential connectivity between striatum and the supplementary motor area, posterior cingulate cortex, and posterior insula. Our approach for analysing RS-fMRI in clinical populations has provided clear evidence that cortico-striatal circuits are organized differently in ASD. Based on previous task-based segmentations of the striatum, we believe that the anterior putamen cluster present in TD, but not in ASD, likely contributes to social and language processes.


Subject(s)
Autism Spectrum Disorder/physiopathology , Brain Mapping/methods , Cerebral Cortex/physiology , Putamen/physiology , Adolescent , Adult , Autism Spectrum Disorder/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Child , Humans , Magnetic Resonance Imaging , Male , Putamen/diagnostic imaging , Young Adult
12.
Psychopathology ; 50(6): 355-372, 2017.
Article in English | MEDLINE | ID: mdl-29232684

ABSTRACT

Drawing on sociocultural theories and Bayesian accounts of brain function, in this article we construe psychiatric conditions as disorders of social interaction to fully account for their complexity and dynamicity across levels of description and temporal scales. After an introduction of the theoretical underpinnings of our integrative approach, we take autism spectrum conditions (ASC) as a paradigm example and discuss how neurocognitive hypotheses can be translated into a Bayesian formulation, i.e., in terms of predictive processing and active inference. We then argue that consideration of individuals (even within a Bayesian framework) will not be enough for a comprehensive understanding of psychiatric conditions and consequently put forward the dialectical misattunement hypothesis, which views psychopathology not merely as disordered function within single brains but also as a dynamic interpersonal mismatch that encompasses various levels of description. Moving from a mere comparison of groups, i.e., "healthy" persons versus "patients," to a fine-grained analysis of social interactions within dyads and groups of individuals will open new avenues and may allow to avoid an overly neurocentric scope in psychiatric research as well as help to reduce social exclusion.


Subject(s)
Autistic Disorder/diagnosis , Bayes Theorem , Psychopathology/methods , Humans
13.
Front Psychiatry ; 8: 230, 2017.
Article in English | MEDLINE | ID: mdl-29180968

ABSTRACT

Obese individuals have been shown to exhibit abnormal sensitivity to rewards and reward-predicting cues as for example food-associated cues frequently used in advertisements. It has also been shown that food-associated cues can increase goal-directed behavior but it is currently unknown, whether this effect differs between normal-weight, overweight, and obese individuals. Here, we investigate this question by using a Pavlovian-to-instrumental transfer (PIT) task in normal-weight (N = 20), overweight (N = 17), and obese (N = 17) individuals. Furthermore, we applied eye tracking during Pavlovian conditioning to measure the participants' conditioned response as a proxy of the incentive salience of the predicted reward. Our results show that the goal-directed behavior of overweight individuals was more strongly influenced by food-predicting cues (i.e., stronger PIT effect) than that of normal-weight and obese individuals (p < 0.001). The weight groups were matched for age, gender, education, and parental education. Eye movements during Pavlovian conditioning also differed between weight categories (p < 0.05) and were used to categorize individuals based on their fixation style into "high eye index" versus "low eye index" as well. Our main finding was that the fixation style exhibited a complex interaction with the weight category. Furthermore, we found that normal-weight individuals of the group "high eye index" had higher body mass index within the healthy range than individuals of the group "low eye index" (p < 0.001), but this relationship was not found within in the overweight or obese groups (p > 0.646). Our findings are largely consistent with the incentive sensitization theory predicting that overweight individuals are more susceptible to food-related cues than normal-weight controls. However, this hypersensitivity might be reduced in obese individuals, possibly due to habitual/compulsive overeating or differences in reward valuation.

14.
Brain Topogr ; 30(6): 757-773, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28712063

ABSTRACT

In today's 24/7 society, sleep restriction is a common phenomenon which leads to increased levels of sleep pressure in daily life. However, the magnitude and extent of impairment of brain functioning due to increased sleep pressure is still not completely understood. Resting state network (RSN) analyses have become increasingly popular because they allow us to investigate brain activity patterns in the absence of a specific task and to identify changes under different levels of vigilance (e.g. due to increased sleep pressure). RSNs are commonly derived from BOLD fMRI signals but studies progressively also employ cerebral blood flow (CBF) signals. To investigate the impact of sleep pressure on RSNs, we examined RSNs of participants under high (19 h awake) and normal (10 h awake) sleep pressure with three imaging modalities (arterial spin labeling, BOLD, pseudo BOLD) while providing confirmation of vigilance states in most conditions. We demonstrated that CBF and pseudo BOLD signals (measured with arterial spin labeling) are suited to derive independent component analysis based RSNs. The spatial map differences of these RSNs were rather small, suggesting a strong biological substrate underlying these networks. Interestingly, increased sleep pressure, namely longer time awake, specifically changed the functional network connectivity (FNC) between RSNs. In summary, all FNCs of the default mode network with any other network or component showed increasing effects as a function of increased 'time awake'. All other FNCs became more anti-correlated with increased 'time awake'. The sensorimotor networks were the only ones who showed a within network change of FNC, namely decreased connectivity as function of 'time awake'. These specific changes of FNC could reflect both compensatory mechanisms aiming to fight sleep as well as a first reduction of consciousness while becoming drowsy. We think that the specific changes observed in functional network connectivity could imply an impairment of information transfer between the affected RSNs.


Subject(s)
Brain/physiology , Cerebrovascular Circulation/physiology , Nerve Net/physiology , Sleep/physiology , Adult , Brain/diagnostic imaging , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Nerve Net/diagnostic imaging , Wakefulness , Young Adult
15.
J Neurosci ; 37(34): 8092-8101, 2017 08 23.
Article in English | MEDLINE | ID: mdl-28716961

ABSTRACT

Translational neuroimaging requires approaches and techniques that can bridge between multiple different species and disease states. One candidate method that offers insights into the brain's functional connectivity (FC) is resting-state fMRI (rs-fMRI). In both humans and nonhuman primates, patterns of FC (often referred to as the functional connectome) have been related to the underlying structural connectivity (SC; also called the structural connectome). Given the recent rise in preclinical neuroimaging of mouse models, it is an important question whether the mouse functional connectome conforms to the underlying SC. Here, we compared FC derived from rs-fMRI in female mice with the underlying monosynaptic structural connectome as provided by the Allen Brain Connectivity Atlas. We show that FC between interhemispheric homotopic cortical and hippocampal areas, as well as in cortico-striatal pathways, emerges primarily via monosynaptic structural connections. In particular, we demonstrate that the striatum (STR) can be segregated according to differential rs-fMRI connectivity patterns that mirror monosynaptic connectivity with isocortex. In contrast, for certain subcortical networks, FC emerges along polysynaptic pathways as shown for left and right STR, which do not share direct anatomical connections, but high FC is putatively driven by a top-down cortical control. Finally, we show that FC involving cortico-thalamic pathways is limited, possibly confounded by the effect of anesthesia, small regional size, and tracer injection volume. These findings provide a critical foundation for using rs-fMRI connectivity as a translational tool to study complex brain circuitry interactions and their pathology due to neurological or psychiatric diseases across species.SIGNIFICANCE STATEMENT A comprehensive understanding of how the anatomical architecture of the brain, often referred to as the "connectome," corresponds to its function is arguably one of the biggest challenges for understanding the brain and its pathologies. Here, we use the mouse as a model for comparing functional connectivity (FC) derived from resting-state fMRI with gold standard structural connectivity measures based on tracer injections. In particular, we demonstrate high correspondence between FC measurements of cortico-cortical and cortico-striatal regions and their anatomical underpinnings. This work provides a critical foundation for studying the pathology of these circuits across mouse models and human patients.


Subject(s)
Brain/physiology , Connectome/methods , Magnetic Resonance Imaging/methods , Nerve Net/physiology , Animals , Female , Mice , Mice, Inbred C57BL
16.
Sci Data ; 4: 170010, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28291247

ABSTRACT

The second iteration of the Autism Brain Imaging Data Exchange (ABIDE II) aims to enhance the scope of brain connectomics research in Autism Spectrum Disorder (ASD). Consistent with the initial ABIDE effort (ABIDE I), that released 1112 datasets in 2012, this new multisite open-data resource is an aggregate of resting state functional magnetic resonance imaging (MRI) and corresponding structural MRI and phenotypic datasets. ABIDE II includes datasets from an additional 487 individuals with ASD and 557 controls previously collected across 16 international institutions. The combination of ABIDE I and ABIDE II provides investigators with 2156 unique cross-sectional datasets allowing selection of samples for discovery and/or replication. This sample size can also facilitate the identification of neurobiological subgroups, as well as preliminary examinations of sex differences in ASD. Additionally, ABIDE II includes a range of psychiatric variables to inform our understanding of the neural correlates of co-occurring psychopathology; 284 diffusion imaging datasets are also included. It is anticipated that these enhancements will contribute to unraveling key sources of ASD heterogeneity.


Subject(s)
Autism Spectrum Disorder , Connectome , Humans , Magnetic Resonance Imaging , Neuroimaging
17.
Brain ; 140(1): 235-246, 2017 01.
Article in English | MEDLINE | ID: mdl-28031223

ABSTRACT

Social deficits are a core symptom of autism spectrum disorder; however, the perturbed neural mechanisms underpinning these deficits remain unclear. It has been suggested that social prediction errors-coding discrepancies between the predicted and actual outcome of another's decisions-might play a crucial role in processing social information. While the gyral surface of the anterior cingulate cortex signalled social prediction errors in typically developing individuals, this crucial social signal was altered in individuals with autism spectrum disorder. Importantly, the degree to which social prediction error signalling was aberrant correlated with diagnostic measures of social deficits. Effective connectivity analyses further revealed that, in typically developing individuals but not in autism spectrum disorder, the magnitude of social prediction errors was driven by input from the ventromedial prefrontal cortex. These data provide a novel insight into the neural substrates underlying autism spectrum disorder social symptom severity, and further research into the gyral surface of the anterior cingulate cortex and ventromedial prefrontal cortex could provide more targeted therapies to help ameliorate social deficits in autism spectrum disorder.


Subject(s)
Anticipation, Psychological/physiology , Autism Spectrum Disorder/physiopathology , Gyrus Cinguli/physiopathology , Prefrontal Cortex/physiopathology , Severity of Illness Index , Social Perception , Adolescent , Adult , Humans , Male , Young Adult
18.
Hum Brain Mapp ; 38(3): 1478-1491, 2017 03.
Article in English | MEDLINE | ID: mdl-27859903

ABSTRACT

Over the last decade, structure-function relationships have begun to encompass networks of brain areas rather than individual structures. For example, corticostriatal circuits have been associated with sensorimotor, limbic, and cognitive information processing, and damage to these circuits has been shown to produce unique behavioral outcomes in Autism, Parkinson's Disease, Schizophrenia and healthy ageing. However, it remains an open question how abnormal or absent connectivity can be detected at the individual level. Here, we provide a method for clustering gross morphological structures into subregions with unique functional connectivity fingerprints, and generate network probability maps usable as a baseline to compare individual cases against. We used connectivity metrics derived from resting-state fMRI (N = 100), in conjunction with hierarchical clustering methods, to parcellate the striatum into functionally distinct clusters. We identified three highly reproducible striatal subregions, across both hemispheres and in an independent replication dataset (N = 100) (dice-similarity values 0.40-1.00). Each striatal seed region resulted in a highly reproducible distinct connectivity fingerprint: the putamen showed predominant connectivity with cortical and cerebellar sensorimotor and language processing areas; the ventromedial striatum cluster had a distinct limbic connectivity pattern; the caudate showed predominant connectivity with the thalamus, frontal and occipital areas, and the cerebellum. Our corticostriatal probability maps agree with existing connectivity data in humans and non-human primates, and showed a high degree of replication. We believe that these maps offer an efficient tool to further advance hypothesis driven research and provide important guidance when investigating deviant connectivity in neurological patient populations suffering from e.g., stroke or cerebral palsy. Hum Brain Mapp 38:1478-1491, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Brain Mapping , Cerebral Cortex/physiology , Corpus Striatum/physiology , Dermatoglyphics , Neural Pathways/physiology , Probability , Rest , Adolescent , Adult , Cerebral Cortex/diagnostic imaging , Corpus Striatum/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways/diagnostic imaging , Oxygen/blood , Young Adult
19.
Front Psychiatry ; 7: 177, 2016.
Article in English | MEDLINE | ID: mdl-27990125

ABSTRACT

Most psychiatric disorders are associated with subtle alterations in brain function and are subject to large interindividual differences. Typically, the diagnosis of these disorders requires time-consuming behavioral assessments administered by a multidisciplinary team with extensive experience. While the application of Machine Learning classification methods (ML classifiers) to neuroimaging data has the potential to speed and simplify diagnosis of psychiatric disorders, the methods, assumptions, and analytical steps are currently opaque and not accessible to researchers and clinicians outside the field. In this paper, we describe potential classification pipelines for autism spectrum disorder, as an example of a psychiatric disorder. The analyses are based on resting-state fMRI data derived from a multisite data repository (ABIDE). We compare several popular ML classifiers such as support vector machines, neural networks, and regression approaches, among others. In a tutorial style, written to be equally accessible for researchers and clinicians, we explain the rationale of each classification approach, clarify the underlying assumptions, and discuss possible pitfalls and challenges. We also provide the data as well as the MATLAB code we used to achieve our results. We show that out-of-the-box ML classifiers can yield classification accuracies of about 60-70%. Finally, we discuss how classification accuracy can be further improved, and we mention methodological developments that are needed to pave the way for the use of ML classifiers in clinical practice.

20.
Neuron ; 92(2): 544-554, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27693256

ABSTRACT

Higher brain function relies upon the ability to flexibly integrate information across specialized communities of brain regions; however, it is unclear how this mechanism manifests over time. In this study, we used time-resolved network analysis of fMRI data to demonstrate that the human brain traverses between functional states that maximize either segregation into tight-knit communities or integration across otherwise disparate neural regions. Integrated states enable faster and more accurate performance on a cognitive task, and are associated with dilations in pupil diameter, suggesting that ascending neuromodulatory systems may govern the transition between these alternative modes of brain function. Together, our results confirm a direct link between cognitive performance and the dynamic reorganization of the network structure of the brain.


Subject(s)
Brain/physiology , Cognition/physiology , Pupil/physiology , Adult , Brain/diagnostic imaging , Brain Mapping , Female , Functional Neuroimaging , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Nerve Net , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Task Performance and Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...