Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mayo Clin Proc Innov Qual Outcomes ; 8(1): 1-16, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38186923

ABSTRACT

Objective: To evaluate the effect of transcutaneous (tSCS) and epidural electrical spinal cord stimulation (EES) in facilitating volitional movements, balance, and nonmotor functions, in this observational study, tSCS and EES were consecutively tested in 2 participants with motor complete spinal cord injury (SCI). Participants and Methods: Two participants (a 48-year-old woman and a 28-year-old man), both classified as motor complete spinal injury, were enrolled in the study. Both participants went through a unified protocol, such as an initial electrophysiological assessment of neural connectivity, consecutive tSCS and EES combined with 8 wks of motor training with electromyography (EMG) and kinematic evaluation. The study was conducted from May 1, 2019, to December 31, 2021. Results: In both participants, tSCS reported a minimal improvement in voluntary movements still essential to start tSCS-enabled rehabilitation. Compared with tSCS, following EES showed immediate improvement in voluntary movements, whereas tSCS was more effective in improving balance and posture. Continuous improvement in nonmotor functions was found during tSCS-enabled and then during EES-enabled motor training. Conclusion: Results report a significant difference in the effect of tSCS and EES on the recovery of neurologic functions and support consecutive tSCS and EES applications as a potential therapy for SCI. The proposed approach may help in selecting patients with SCI responsive to neuromodulation. It would also help initiate neuromodulation and rehabilitation therapy early, particularly for motor complete SCI with minimal effect from conventional rehabilitation.

2.
Sensors (Basel) ; 22(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36236276

ABSTRACT

The quality of modern measuring instruments has a strong influence on the speed of diagnosing diseases of the human musculoskeletal system. The research is focused on automatization of the method of gait analysis. The study involved six healthy subjects. The subjects walk straight. Each subject made several gait types: casual walking and imitation of a non-standard gait, including shuffling, lameness, clubfoot, walking from the heel, rolling from heel to toe, walking with hands in pockets, and catwalk. Each type of gait was recorded three times. For video fixation, the Vicon Nexus system was used. A total of 27 reflective markers were placed on the special anatomical regions. The goniometry methods were used. The walk data were divided by steps and by step phases. Kinematic parameters for estimation were formulated and calculated. An approach for data clusterization is presented. For this purpose, angle data were interpolated and the interpolation coefficients were used for clustering the data. The data were processed and four cluster groups were found. Typical angulograms for cluster groups were presented. For each group, average angles were calculated. A statistically significant difference was found between received cluster groups.


Subject(s)
Gait Analysis , Gait , Biomechanical Phenomena , Gait Analysis/methods , Humans , Pilot Projects , Walking
3.
Exp Brain Res ; 239(2): 627-638, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33388811

ABSTRACT

Localized carrier-mediated administration of drugs is a promising approach to treatment of acute phase of spinal cord injury (SCI) as it allows enhanced and/or sustained drug delivery to damaged tissues along with minimization of systemic side effects. We studied the effect of locally applied self-assembling micellar formulation of methylprednisolone succinate (MPS) with trifunctional block copolymer of ethylene oxide and propylene oxide (TBC) on functional recovery and tissue drug content after SCI in rats in comparison with local and systemic administration of MPS alone. Variations in the amplitude of motor evoked responses in the hindlimb muscles induced by epidural stimulation during acute phase of SCI and restoration of movements during chronic period after local vs. systemic application of MPS were evaluated in this study. Results demonstrate that local delivery of MPS in combination with TBC facilitates spinal cord sensorimotor circuitry, increasing the excitability. In addition, this formulation was found to be more effective in improvement of locomotion after SCI compared to systemic administration. LC-MS/MS data shows that the use of TBC carrier increases the glucocorticoid content in treated spinal cord by more than four times over other modes of treatment. The results of this study demonstrate that the local treatment of acute SCI with MPS in the form of mixed micelles with TBC can provide improved therapeutic outcome by promoting drug accumulation and functional restoration of the spinal cord.


Subject(s)
Methylprednisolone Hemisuccinate , Spinal Cord Injuries , Animals , Chromatography, Liquid , Rats , Spinal Cord , Spinal Cord Injuries/drug therapy , Tandem Mass Spectrometry
4.
Front Neurosci ; 14: 552, 2020.
Article in English | MEDLINE | ID: mdl-32655351

ABSTRACT

OBJECTIVE: In this study, we evaluated the role of residual supraspinal and afferent signaling and their convergence on the sublesional spinal network in subject diagnosed with complete paralysis (AIS-A). METHODS: A combination of electrophysiologic techniques with positional changes and subject-driven reinforcement maneuvers was implemented in this study. Electrical stimulation was applied transcutaneously at the T9-L2 vertebra levels and the spinal cord motor evoked potentials (SEMP) were recorded from leg muscles. To test the influence of positional changes, the subject was placed in (i) supine, (ii) upright with partial body weight bearing and (iii) vertically suspended without body weight bearing positions. RESULTS: Increase in amplitude of SEMP was observed during transition from supine to upright position, supporting the role of sensory input in lumbosacral network excitability. Additionally, amplitudes of SEMP were facilitated during reinforcement maneuvers, indicating a supralesional influence on sub-lesional network. After initial assessment, subject underwent rehabilitation therapy with following electrophysiological testing that reviled facilitation of SEMP. CONCLUSION: These results demonstrate that combination of electrophysiological techniques with positional and reinforcement maneuvers can add to the diagnostics of discomplete SCI. These findings also support an idea that integration of supraspinal and afferent information on sub-lesional circuitry plays a critical role in facilitation of spinal sensorimotor network in discomplete SCI.

SELECTION OF CITATIONS
SEARCH DETAIL
...