Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 24237, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34930947

ABSTRACT

Highly accurate segmentation of large 3D volumes is a demanding task. Challenging applications like the segmentation of synchrotron radiation microtomograms (SRµCT) at high-resolution, which suffer from low contrast, high spatial variability and measurement artifacts, readily exceed the capacities of conventional segmentation methods, including the manual segmentation by human experts. The quantitative characterization of the osseointegration and spatio-temporal biodegradation process of bone implants requires reliable, and very precise segmentation. We investigated the scaling of 2D U-net for high resolution grayscale volumes by three crucial model hyper-parameters (i.e., the model width, depth, and input size). To leverage the 3D information of high-resolution SRµCT, common three axes prediction fusing is extended, investigating the effect of adding more than three axes prediction. In a systematic evaluation we compare the performance of scaling the U-net by intersection over union (IoU) and quantitative measurements of osseointegration and degradation parameters. Overall, we observe that a compound scaling of the U-net and multi-axes prediction fusing with soft voting yields the highest IoU for the class "degradation layer". Finally, the quantitative analysis showed that the parameters calculated with model segmentation deviated less from the high quality results than those obtained by a semi-automatic segmentation method.


Subject(s)
Biodegradation, Environmental , Synchrotrons , X-Ray Microtomography/methods , Artifacts , Deep Learning , False Positive Reactions , Humans , Image Processing, Computer-Assisted , Materials Science , Neural Networks, Computer , Osseointegration , Prostheses and Implants , Reproducibility of Results
2.
Eur Radiol ; 31(6): 3837-3845, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33219850

ABSTRACT

OBJECTIVE: The aim is to evaluate whether smart worklist prioritization by artificial intelligence (AI) can optimize the radiology workflow and reduce report turnaround times (RTATs) for critical findings in chest radiographs (CXRs). Furthermore, we investigate a method to counteract the effect of false negative predictions by AI-resulting in an extremely and dangerously long RTAT, as CXRs are sorted to the end of the worklist. METHODS: We developed a simulation framework that models the current workflow at a university hospital by incorporating hospital-specific CXR generation rates and reporting rates and pathology distribution. Using this, we simulated the standard worklist processing "first-in, first-out" (FIFO) and compared it with a worklist prioritization based on urgency. Examination prioritization was performed by the AI, classifying eight different pathological findings ranked in descending order of urgency: pneumothorax, pleural effusion, infiltrate, congestion, atelectasis, cardiomegaly, mass, and foreign object. Furthermore, we introduced an upper limit for the maximum waiting time, after which the highest urgency is assigned to the examination. RESULTS: The average RTAT for all critical findings was significantly reduced in all prioritization simulations compared to the FIFO simulation (e.g., pneumothorax: 35.6 min vs. 80.1 min; p < 0.0001), while the maximum RTAT for most findings increased at the same time (e.g., pneumothorax: 1293 min vs 890 min; p < 0.0001). Our "upper limit" substantially reduced the maximum RTAT in all classes (e.g., pneumothorax: 979 min vs. 1293 min/1178 min; p < 0.0001). CONCLUSION: Our simulations demonstrate that smart worklist prioritization by AI can reduce the average RTAT for critical findings in CXRs while maintaining a small maximum RTAT as FIFO. KEY POINTS: • Development of a realistic clinical workflow simulator based on empirical data from a hospital allowed precise assessment of smart worklist prioritization using artificial intelligence. • Employing a smart worklist prioritization without a threshold for maximum waiting time runs the risk of false negative predictions of the artificial intelligence greatly increasing the report turnaround time. • Use of a state-of-the-art convolution neural network can reduce the average report turnaround time almost to the upper limit of a perfect classification algorithm (e.g., pneumothorax: 35.6 min vs. 30.4 min).


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Humans , Radiography , Workflow , X-Rays
3.
IEEE Trans Biomed Eng ; 67(2): 495-503, 2020 02.
Article in English | MEDLINE | ID: mdl-31071016

ABSTRACT

OBJECTIVE: This paper addresses two key problems of skin lesion classification. The first problem is the effective use of high-resolution images with pretrained standard architectures for image classification. The second problem is the high-class imbalance encountered in real-world multi-class datasets. METHODS: To use high-resolution images, we propose a novel patch-based attention architecture that provides global context between small, high-resolution patches. We modify three pretrained architectures and study the performance of patch-based attention. To counter class imbalance problems, we compare oversampling, balanced batch sampling, and class-specific loss weighting. Additionally, we propose a novel diagnosis-guided loss weighting method that takes the method used for ground-truth annotation into account. RESULTS: Our patch-based attention mechanism outperforms previous methods and improves the mean sensitivity by [Formula: see text]. Class balancing significantly improves the mean sensitivity and we show that our diagnosis-guided loss weighting method improves the mean sensitivity by [Formula: see text] over normal loss balancing. CONCLUSION: The novel patch-based attention mechanism can be integrated into pretrained architectures and provides global context between local patches while outperforming other patch-based methods. Hence, pretrained architectures can be readily used with high-resolution images without downsampling. The new diagnosis-guided loss weighting method outperforms other methods and allows for effective training when facing class imbalance. SIGNIFICANCE: The proposed methods improve automatic skin lesion classification. They can be extended to other clinical applications where high-resolution image data and class imbalance are relevant.


Subject(s)
Deep Learning , Image Interpretation, Computer-Assisted/methods , Skin Neoplasms/diagnostic imaging , Databases, Factual , Dermoscopy , Humans , Skin/diagnostic imaging , Skin Neoplasms/classification , Skin Neoplasms/pathology
4.
Sci Rep ; 9(1): 6381, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31011155

ABSTRACT

The increased availability of labeled X-ray image archives (e.g. ChestX-ray14 dataset) has triggered a growing interest in deep learning techniques. To provide better insight into the different approaches, and their applications to chest X-ray classification, we investigate a powerful network architecture in detail: the ResNet-50. Building on prior work in this domain, we consider transfer learning with and without fine-tuning as well as the training of a dedicated X-ray network from scratch. To leverage the high spatial resolution of X-ray data, we also include an extended ResNet-50 architecture, and a network integrating non-image data (patient age, gender and acquisition type) in the classification process. In a concluding experiment, we also investigate multiple ResNet depths (i.e. ResNet-38 and ResNet-101). In a systematic evaluation, using 5-fold re-sampling and a multi-label loss function, we compare the performance of the different approaches for pathology classification by ROC statistics and analyze differences between the classifiers using rank correlation. Overall, we observe a considerable spread in the achieved performance and conclude that the X-ray-specific ResNet-38, integrating non-image data yields the best overall results. Furthermore, class activation maps are used to understand the classification process, and a detailed analysis of the impact of non-image features is provided.


Subject(s)
Deep Learning , Thorax/diagnostic imaging , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Area Under Curve , Child , Child, Preschool , Databases as Topic , Humans , Image Processing, Computer-Assisted , Infant , Infant, Newborn , Middle Aged , Models, Theoretical , Statistics, Nonparametric , X-Rays , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...