Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124556, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38850820

ABSTRACT

For the sustainable advancement of industrial expansion that is environmentally conscious, harmful dyes must be removed from wastewater. Untreated effluents containing colors have the potential to harm the ecosystem and pose major health risks to people, animals, and aquatic life. Here, we have fabricated Ni or Fe modified with BaTiO3 materials and effectively utilized them for Reactive Red 120 (RR 120) dye degradation under UV-A light. The synthesized materials were characterized, and their structural, and photo-physical properties were reported. Phase segregation was not present in the XRD pattern, as evidenced by the absence of secondary phase peaks linked to iron, nickel, or oxides. Low metal ion concentrations may be the cause of this, and the presence of those elements was confirmed by XPS measurements. The Raman spectra of the BaTiO3/Ni and BaTiO3/Fe samples show a widened peak at 500 cm-1, which suggests that Ni or Fe are efficiently loaded onto the BaTiO3. RR 120 dye photodegradation under UV light conditions was effectively catalyzed by BaTiO3/Fe, as evidenced by its superior performance in the UV irradiation technique over both BaTiO3 and BaTiO3/Ni. Compared to bare BaTiO3, both metal-modified materials efficiently degraded the RR 120 dye. Acidic pH facilitated the degradation process, which makes sense given that the heterogeneous photo-Fenton reaction was the mechanism of degradation along with BaTiO3 sensitization. High-acidity sewage can be dangerous and carcinogenic, and conventional biological treatment methods are not appropriate for managing it. In the current investigation, it may be used to treat color effluents with extremely low pH levels. Additionally, the ability of the produced nanocomposites to inhibit the growth of twenty pathogens was examined, along with two fungi, fifteen Gram-negative Bacilli (GNB), one Gram-positive Bacilli (GPB), and two Gram-positive Cocci (GBC).


Subject(s)
Barium Compounds , Iron , Nickel , Photolysis , Titanium , Ultraviolet Rays , Titanium/chemistry , Titanium/pharmacology , Iron/chemistry , Nickel/chemistry , Barium Compounds/chemistry , Rhodamines/chemistry , Coloring Agents/chemistry , Spectrum Analysis, Raman , Water Pollutants, Chemical/chemistry , Triazines
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123972, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38306923

ABSTRACT

In recent years, researchers have been actively investigating metal oxide-based materials with narrow bandgaps due to their potential applications toward wastewater treatment and oxygen evolution reactions (OER). In this study, we successfully synthesized g-C3N4 (GCN), Fe2O3, and Fe2O3/g-C3N4 (FGCN) using thermal polymerization and hydrothermal methods. We characterized the physicochemical and structural properties of these materials through various analytical techniques including XRD, FT-IR, UV-DRS, XPS, FE-SEM, and HR-TEM analyses, confirming the effective construction of the FGCN composite catalyst. We evaluated the photocatalytic activity of Fe2O3, GCN, and FGCN composite catalysts by assessing their ability to degrade rhodamine B (RhB) and crystal violet (CV) by exposing them to sunlight for 150 min. Among these catalysts, the FGCN composite demonstrated excellent photocatalytic performance, achieving 93 % and 95 % degradation of RhB and CV, respectively, under 150 min of sunlight exposure. The developed Fe2O3/g-C3N4@Nickel foam (FGCN@NF) composite catalyst exhibits remarkable OER performance, with a reduced Tafel slope of 64 mV/dec and a low overpotential of 290 mV at a current density of 10 mA/cm2 and shows excellent durable performance over a long time (15 h). Total Organic Carbon (TOC) analysis confirmed the mineralization of both dyes. The photocatalytic performance remained largely unchanged after five consecutive experiments, demonstrating excellent reusability and photostability. Trapping experiments revealed that O2●- is the main species responsible for the photocatalytic decomposition of various dyes by the FGCN composite catalyst. Therefore, the development of a versatile photo/electrocatalytic system that can efficiently promote energy conversion in environmental applications has attracted great attention.

3.
Langmuir ; 39(42): 15055-15066, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37842923

ABSTRACT

Compositional and structural elucidation of the materials is important to know their properties, chemical stability, and electro-photoactivity. The heterojunction electrocatalyst and photocatalyst activity could open a new window for solving the most urgent environmental and energy problems. Here, for the first time, we have designed and fabricated Bi2O3/bismuth titanates modified with MOF-In2S3/CdIn2S4 materials by a stepwise process. The detailed structural elucidation and formation of mixed composite phases were studied in detail. It has been found that the formed composite was efficiently utilized for the electrocatalytic H2 production reaction and the photocatalytic degradation of tetracycline. XRD patterns for the metal-organic framework-In2S3 showed a main compound of MOF, and it was assigned to a MIL-53 MOF phase, with a monoclinic structure. The addition of CdCl2 onto the MOF-In2S3 phase effectively produced a CdIn2S4 flower platform on the MOF rods. The uniform dispersion of the bismuth titanates in MOF-In2S3/CdIn2S4 materials is detected by mapping of elements obtained by dark-field HAADF-STEM. Finally, the predictions of how to integrate experiments and obtain structural results more effectively and their common development in new heterojunctions for electro-/photocatalytic applications are presented.

4.
Micromachines (Basel) ; 14(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37512765

ABSTRACT

In this study, we utilized calcination and simple impregnation methods to successfully fabricate bare g-C3N4 (GCN) and x% Ag/g-C3N4 (x% AgGCN) composite photocatalysts with various weight percentages (x = 1, 3, 5, and 7 wt.%). The synthesized bare and composite photocatalysts were analyzed to illustrate their phase formation, functional group, morphology, and optical properties utilizing XRD, FT-IR, UV-Vis DRS, PL, FE-SEM, and the EDS. The photodegradation rate of MO under solar light irradiation was measured, and the 5% AgGCN composite photocatalyst showed higher photocatalytic activity (99%), which is very high compared to other bare and composite photocatalysts. The MO dye degradation rate constant with the 5% AgGCN photocatalyst exhibits 14.83 times better photocatalytic activity compared to the bare GCN catalyst. This photocatalyst showed good efficiency in the degradation of MO dye and demonstrated cycling stability even in the 5th successive photocatalytic reaction cycle. The higher photocatalytic activity of the 5% AgGCN composite catalyst for the degradation of MO dye is due to the interaction of Ag with GCN and the localized surface plasmon resonance (SPR) effect of Ag. The scavenger study results indicate that O2●- radicals play a major role in MO dye degradation. A possible charge-transfer mechanism is proposed to explain the solar-light-driven photocatalyst of GCN.

SELECTION OF CITATIONS
SEARCH DETAIL
...