Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 130(21): 6879-92, 2008 May 28.
Article in English | MEDLINE | ID: mdl-18452291

ABSTRACT

Mineralization of calcium carbonate in aqueous solutions starting from its initiation was studied by time-resolved small-angle neutron scattering (SANS). SANS revealed that homogeneous crystallization of CaCO 3 involves an initial formation of thin plate-shaped nuclei which subsequently reassemble to 3-dimensional particles, first of fractal and finally of compact structure. The presence of the egg-white protein ovalbumin leads to a different progression of mineralization through several stages; the first step represents amorphous CaCO 3, whereas the other phases are crystalline. The formation and dissolution of the amorphous phase is accompanied by Ca (2+)-mediated unfolding and cross-linking of about 50 protein monomers showing the characteristic scattering of linear chains with a large statistical segment length. The protein complexes act as nucleation centers for the amorphous phase because of their enrichment by Ca (2+) ions. SANS revealed the sequential formation of CaCO 3 starting from the amorphous phase and the subsequent formation of the crystalline polymorphs vaterite and aragonite. This formation from less dense to more dense polymorphs follows the Ostwald-Volmer rule.


Subject(s)
Calcium Carbonate/chemistry , Ovalbumin/chemistry , Calcium Chloride/chemistry , Crystallization , Neutron Diffraction , Protein Conformation , Protein Folding , Scattering, Small Angle , Water/chemistry
2.
Langmuir ; 21(9): 3981-6, 2005 Apr 26.
Article in English | MEDLINE | ID: mdl-15835964

ABSTRACT

Strontianite nanowires have been synthesized on self-assembled monolayers (SAM) in the presence of polyacrylate templates. The morphology of this product exhibits characteristic differences from that of products obtained in the absence of polyacrylate. It is demonstrated that the template-induced crystallization process involves the interaction between the SAM surface, polyacrylate (a dissolved polyelectrolyte), and the cations/anions in solution. By the combination of these components, hierarchically ordered mineral hybrid structures are formed.

3.
Langmuir ; 21(9): 3987-91, 2005 Apr 26.
Article in English | MEDLINE | ID: mdl-15835965

ABSTRACT

The formation of biominerals by living organisms is governed by the cooperation of soluble and insoluble macromolecules with peculiar interfacial properties. To date, most of the studies on mineralization processes involve model systems that only account for the existence of one organic matrix and thus disregard the interaction between the soluble and insoluble organic components that is crucial for a better understanding of the processes taking place at the inorganic-organic interface. We have set up a model system composed of a matrix surface, namely, a self-assembled monolayer (SAM), and a soluble component, hyperbranched polyglycerol. The model mineral calcium carbonate displays diverse polymorphism. It could be demonstrated that the phase selection of calcium carbonate is controlled by the cooperative interaction of the SAM and hyperbranched polyglycerol of different molecular weights (M(n) = 500-6000 g/mol) adsorbed to the SAM. Our studies showed that hyperbranched polyglycerol is adsorbed to polar as well as to nonpolar SAMs. This effect can be related to its highly flexible structure and its amphiphilic character. The adsorption of hyperbranched polyglycerol to the SAMs with different surface polarities resulted in the formation of aragonite for alkyl-terminated SAMs and no phase selection for carboxylate-terminated SAMs.


Subject(s)
Biocompatible Materials/chemistry , Calcium Carbonate/chemistry , Crystallization/methods , Glycerol/chemistry , Polymers/chemistry , Adsorption , Biomimetics , Micelles , Minerals/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...