Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acad Radiol ; 31(5): 1784-1791, 2024 05.
Article in English | MEDLINE | ID: mdl-38155024

ABSTRACT

RATIONALE AND OBJECTIVES: The prognostic role of pericardial effusion (PE) in Covid 19 is unclear. The aim of the present study was to estimate the prognostic role of PE in patients with Covid 19 in a large multicentre setting. MATERIALS AND METHODS: This retrospective study is a part of the German multicenter project RACOON (Radiological Cooperative Network of the Covid 19 pandemic). The acquired sample comprises 1197 patients, 363 (30.3%) women and 834 (69.7%) men. In every case, chest computed tomography was analyzed for PE. Data about 30-day mortality, need for mechanical ventilation and need for intensive care unit (ICU) admission were collected. Data were evaluated by means of descriptive statistics. Group differences were calculated with Mann-Whitney test and Fisher exact test. Uni-and multivariable regression analyses were performed. RESULTS: Overall, 46.4% of the patients were admitted to ICU, mechanical lung ventilation was performed in 26.6% and 30-day mortality was 24%. PE was identified in 159 patients (13.3%). The presence of PE was associated with 30-day mortality: HR= 1.54, CI 95% (1.05; 2.23), p = 0.02 (univariable analysis), and HR= 1.60, CI 95% (1.03; 2.48), p = 0.03 (multivariable analysis). Furthermore, density of PE was associated with the need for intubation (OR=1.02, CI 95% (1.003; 1.05), p = 0.03) and the need for ICU admission (OR=1.03, CI 95% (1.005; 1.05), p = 0.01) in univariable regression analysis. The presence of PE was associated with 30-day mortality in male patients, HR= 1.56, CI 95%(1.01-2.43), p = 0.04 (multivariable analysis). In female patients, none of PE values predicted clinical outcomes. CONCLUSION: The prevalence of PE in Covid 19 is 13.3%. PE is an independent predictor of 30-day mortality in male patients with Covid 19. In female patients, PE plays no predictive role.


Subject(s)
COVID-19 , Pericardial Effusion , Tomography, X-Ray Computed , Humans , Male , Female , COVID-19/mortality , COVID-19/epidemiology , COVID-19/diagnostic imaging , COVID-19/complications , Retrospective Studies , Pericardial Effusion/diagnostic imaging , Pericardial Effusion/epidemiology , Aged , Middle Aged , Prognosis , Germany/epidemiology , Respiration, Artificial/statistics & numerical data , SARS-CoV-2 , Intensive Care Units , Aged, 80 and over
2.
J Bacteriol ; 202(22)2020 10 22.
Article in English | MEDLINE | ID: mdl-33093235

ABSTRACT

In any given organism, approximately one-third of all proteins have a yet-unknown function. A widely distributed domain of unknown function is DUF1127. Approximately 17,000 proteins with such an arginine-rich domain are found in 4,000 bacteria. Most of them are single-domain proteins, and a large fraction qualifies as small proteins with fewer than 50 amino acids. We systematically identified and characterized the seven DUF1127 members of the plant pathogen Agrobacterium tumefaciens They all give rise to authentic proteins and are differentially expressed as shown at the RNA and protein levels. The seven proteins fall into two subclasses on the basis of their length, sequence, and reciprocal regulation by the LysR-type transcription factor LsrB. The absence of all three short DUF1127 proteins caused a striking phenotype in later growth phases and increased cell aggregation and biofilm formation. Protein profiling and transcriptome sequencing (RNA-seq) analysis of the wild type and triple mutant revealed a large number of differentially regulated genes in late exponential and stationary growth. The most affected genes are involved in phosphate uptake, glycine/serine homeostasis, and nitrate respiration. The results suggest a redundant function of the small DUF1127 paralogs in nutrient acquisition and central carbon metabolism of A. tumefaciens They may be required for diauxic switching between carbon sources when sugar from the medium is depleted. We end by discussing how DUF1127 might confer such a global impact on cell physiology and gene expression.IMPORTANCE Despite being prevalent in numerous ecologically and clinically relevant bacterial species, the biological role of proteins with a domain of unknown function, DUF1127, is unclear. Experimental models are needed to approach their elusive function. We used the phytopathogen Agrobacterium tumefaciens, a natural genetic engineer that causes crown gall disease, and focused on its three small DUF1127 proteins. They have redundant and pervasive roles in nutrient acquisition, cellular metabolism, and biofilm formation. The study shows that small proteins have important previously missed biological functions. How small basic proteins can have such a broad impact is a fascinating prospect of future research.


Subject(s)
Agrobacterium tumefaciens/metabolism , Bacterial Proteins/metabolism , Carbon/metabolism , Phosphates/metabolism , Agrobacterium tumefaciens/genetics , Arginine/chemistry , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Protein Domains , RNA, Bacterial/genetics , RNA-Seq , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...