Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Endocrinol Metab ; 100(3): 968-76, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25423571

ABSTRACT

CONTEXT: Intestinal glucose absorption is mediated by sodium-dependent glucose transporter 1 (SGLT-1) and glucose transporter 2 (GLUT2), which are linked to sweet taste receptor (STR) signaling and incretin responses. OBJECTIVE: This study aimed to examine intestinal glucose absorption in morbidly obese humans and its relationship to the expression of STR and glucose transporters, glycemia, and incretin responses. DESIGN/SETTING/PARTICIPANTS: Seventeen nondiabetic, morbidly obese subjects (body mass index [BMI], 48 ± 4 kg/m(2)) and 11 lean controls (BMI, 25 ± 1 kg/m(2)) underwent endoscopic duodenal biopsies before and after a 30-minute intraduodenal glucose infusion (30 g glucose and 3 g 3-O-methylglucose [3-OMG]). MAIN OUTCOME MEASURES: Blood glucose and plasma concentrations of 3-OMG, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP-1), insulin, and glucagon were measured over 270 minutes. Expression of duodenal SGLT-1, GLUT2, and STR (T1R2) was quantified by PCR. RESULTS: The increase in plasma 3-OMG (P < .001) and blood glucose (P < .0001) were greater in obese than lean subjects. Plasma 3-OMG correlated directly with blood glucose (r = 0.78, P < .01). In response to intraduodenal glucose, plasma GIP (P < .001), glucagon (P < .001), and insulin (P < .001) were higher, but GLP-1 (P < .001) was less in the obese compared with lean. Expression of SGLT-1 (P = .035), but not GLUT2 or T1R2, was higher in the obese, and related to peak plasma 3-OMG (r = 0.60, P = .01), GIP (r = 0.67, P = .003), and insulin (r = 0.58, P = .02). CONCLUSIONS: In morbid obesity, proximal intestine glucose absorption is accelerated and related to increased SGLT-1 expression, leading to an incretin-glucagon profile promoting hyperinsulinemia and hyperglycemia. These findings are consistent with the concept that accelerated glucose absorption in the proximal gut underlies the foregut theory of obesity and type 2 diabetes.


Subject(s)
Blood Glucose/metabolism , Glucose Transport Proteins, Facilitative/genetics , Glucose/metabolism , Incretins/blood , Intestinal Absorption , Obesity, Morbid/metabolism , 3-O-Methylglucose/pharmacokinetics , Adult , Female , Gastric Inhibitory Polypeptide/blood , Gene Expression , Glucagon/blood , Glucagon-Like Peptide 1/blood , Glucose Transport Proteins, Facilitative/metabolism , Humans , Insulin/blood , Male , Middle Aged , Obesity, Morbid/genetics , Time Factors
2.
Obesity (Silver Spring) ; 22(10): 2164-71, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24990218

ABSTRACT

OBJECTIVE: To determine the effect of Roux-en-Y gastric bypass (RYGB) on the expression of intestinal sweet taste receptors (STRs), glucose transporters (GTs), glucose absorption, and glycemia. METHODS: Intestinal biopsies were collected for mRNA expression of STR (T1R2) and GTs (SGLT-1 and GLUT2) from 11 non-diabetic RYGB, 13 non-diabetic obese, and 11 healthy subjects, at baseline and following a 30 min small intestinal (SI) glucose infusion (30 g/150 ml water with 3 g 3-O-methyl-d-glucopyranose (3-OMG)). Blood glucose, plasma 3-OMG, and insulin were measured for 270 min. RESULTS: In RYGB patients, expression of both GTs was ∼2-fold higher at baseline and after glucose infusion than those of morbidly obese or healthy subjects (P < 0.001). STR expressions were comparable amongst the groups. Peak plasma 3-OMG in both RYGB (r = 0.69, P = 0.01) and obese (r = 0.72, P = 0.005) correlated with baseline expression of SGLT-1, as was the case with peak blood glucose in RYGB subjects (r = 0.69, P = 0.02). CONCLUSIONS: The upregulated intestinal GTs in RYGB patients are associated with increased glucose absorption when glucose is delivered at a physiological rate, suggesting a molecular adaptation to prevent carbohydrate malabsorption from rapid intestinal transit after RYGB.


Subject(s)
Gastric Bypass , Glucose Transport Proteins, Facilitative/genetics , Intestinal Absorption , Intestinal Mucosa/metabolism , Malabsorption Syndromes/prevention & control , Obesity, Morbid/surgery , Adult , Blood Glucose/metabolism , Carbohydrate Metabolism , Case-Control Studies , Female , Gastric Bypass/adverse effects , Glucose/pharmacokinetics , Glucose Transport Proteins, Facilitative/metabolism , Humans , Insulin/blood , Malabsorption Syndromes/genetics , Malabsorption Syndromes/metabolism , Male , Middle Aged , Obesity, Morbid/genetics , Obesity, Morbid/metabolism , Up-Regulation/genetics
3.
Obesity (Silver Spring) ; 22(9): 2003-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24829088

ABSTRACT

OBJECTIVE: To evaluate the effect of modulating pouch emptying (PE) and SI transit of glucose after Roux-en-Y gastric bypass (RYGB) on blood glucose, incretin hormones, glucose absorption and gastrointestinal (GI) symptoms. METHODS: Ten RYGB patients were studied twice in random order, receiving either a 150 ml glucose drink (200 kcal) or the same solution infused into the proximal Roux-limb at 4 kcal/min. Data were compared with 10 healthy volunteers who received a 4 kcal/min duodenal infusion. PE, cecal arrival time (CAT), blood glucose, plasma 3-O-methylglucose (3-OMG), insulin, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide-1 (GLP-1), and GI symptoms were measured. RESULTS: In RYGB subjects, the glucose drink emptied very rapidly (PE t50 = 3 ± 1 min) and intestinal glucose infusion was associated with higher blood glucose and plasma 3-OMG, but lower plasma GLP-1, GIP, insulin, and GI symptoms than oral glucose (all P < 0.001), and comparable to volunteers. In RYGB subjects, CAT correlated inversely with peak GLP-1 (r = -0.73, P = 0.01), and plasma 3-OMG correlated tightly blood glucose (r = 0.94, P < 0.0001). CONCLUSIONS: After RYGB, reducing intestinal glucose delivery to 4 kcal/min is associated with higher blood glucose, greater glucose absorption, lower incretin responses, and less GI symptoms, supporting rapid transit contribution to the exaggerated incretin responses and "dumping symptoms".


Subject(s)
Blood Glucose/metabolism , Dumping Syndrome/etiology , Gastric Bypass , Gastrointestinal Hormones/blood , Gastrointestinal Transit/physiology , Glucose/pharmacokinetics , Intestinal Absorption , Adult , Dumping Syndrome/metabolism , Dumping Syndrome/physiopathology , Female , Gastric Bypass/adverse effects , Gastric Bypass/rehabilitation , Humans , Insulin/blood , Male , Middle Aged , Postprandial Period , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...