Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 15(4): 264, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615035

ABSTRACT

Cognitive dysfunction and dementia are critical symptoms of Lewy Body dementias (LBD). Specifically, alpha-synuclein (αSyn) accumulation in the hippocampus leading to synaptic dysfunction is linked to cognitive deficits in LBD. Here, we investigated the pathological impact of αSyn on hippocampal neurons. We report that either αSyn overexpression or αSyn pre-formed fibrils (PFFs) treatment triggers the formation of cofilin-actin rods, synapse disruptors, in cultured hippocampal neurons and in the hippocampus of synucleinopathy mouse models and of LBD patients. In vivo, cofilin pathology is present concomitantly with synaptic impairment and cognitive dysfunction. Rods generation prompted by αSyn involves the co-action of the cellular prion protein (PrPC) and the chemokine receptor 5 (CCR5). Importantly, we show that CCR5 inhibition, with a clinically relevant peptide antagonist, reverts dendritic spine impairment promoted by αSyn. Collectively, we detail the cellular and molecular mechanism through which αSyn disrupts hippocampal synaptic structure and we identify CCR5 as a novel therapeutic target to prevent synaptic impairment and cognitive dysfunction in LBD.


Subject(s)
Cognition Disorders , Lewy Body Disease , Animals , Mice , Humans , alpha-Synuclein , Dendritic Spines , Actin Depolymerizing Factors , Receptors, CCR5/genetics
2.
Cell Rep ; 43(3): 113914, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38451813

ABSTRACT

Stroke, trauma, and neurodegenerative disorders cause loss of neurites (axons and dendrites) in addition to neuronal death. Neurite loss may result directly from a primary insult, secondary to parental neuron death, or secondary to a post-injury inflammatory response. Here, we use lipopolysaccharide and the alarmin S100ß to selectively evaluate neurite loss caused by the inflammatory response. Activation of microglia and infiltrating macrophages by these stimuli causes neurite loss that far exceeds neuronal death, both in vitro and in vivo. Neurite loss is accompanied by the formation of cofilactin rods and aggregates (CARs), which are polymers of cofilin-1 and actin induced by oxidative stress and other factors. Mice deficient in either cofilin-1 or the superoxide-generating enzyme NADPH oxidase-2 show reduced CAR formation, neurite loss, and motor impairment. The findings identify a mechanism by which inflammation leads to neurite loss via CAR formation and highlight the relevance of neurite loss to functional impairment.


Subject(s)
Neurites , Neurodegenerative Diseases , Mice , Animals , Neurons , Axons , Inflammation
3.
Biomedicines ; 12(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38255199

ABSTRACT

Synapse loss is the principal cause of cognitive decline in Alzheimer's disease (AD) and related disorders (ADRD). Synapse development depends on the intricate dynamics of the neuronal cytoskeleton. Cofilin, the major protein regulating actin dynamics, can be sequestered into cofilactin rods, intra-neurite bundles of cofilin-saturated actin filaments that can disrupt vesicular trafficking and cause synaptic loss. Rods are a brain pathology in human AD and mouse models of AD and ADRD. Eliminating rods is the focus of this paper. One pathway for rod formation is triggered in ~20% of rodent hippocampal neurons by disease-related factors (e.g., soluble oligomers of Amyloid-ß (Aß)) and requires cellular prion protein (PrPC), active NADPH oxidase (NOX), and cytokine/chemokine receptors (CCRs). FDA-approved antagonists of CXCR4 and CCR5 inhibit Aß-induced rods in both rodent and human neurons with effective concentrations for 50% rod reduction (EC50) of 1-10 nM. Remarkably, two D-amino acid receptor-active peptides (RAP-103 and RAP-310) inhibit Aß-induced rods with an EC50 of ~1 pM in mouse neurons and ~0.1 pM in human neurons. These peptides are analogs of D-Ala-Peptide T-Amide (DAPTA) and share a pentapeptide sequence (TTNYT) antagonistic to several CCR-dependent responses. RAP-103 does not inhibit neuritogenesis or outgrowth even at 1 µM, >106-fold above its EC50. N-terminal methylation, or D-Thr to D-Ser substitution, decreases the rod-inhibiting potency of RAP-103 by 103-fold, suggesting high target specificity. Neither RAP peptide inhibits neuronal rod formation induced by excitotoxic glutamate, but both inhibit rods induced in human neurons by several PrPC/NOX pathway activators (Aß, HIV-gp120 protein, and IL-6). Significantly, RAP-103 completely protects against Aß-induced loss of mature and developing synapses and, at 0.1 nM, reverses rods in both rodent and human neurons (T½ ~ 3 h) even in the continuous presence of Aß. Thus, this orally available, brain-permeable peptide should be highly effective in reducing rod pathology in multifactorial neurological diseases with mixed proteinopathies acting through PrPC/NOX.

4.
Biomedicines ; 11(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38001943

ABSTRACT

Cofilactin rod pathology, which can initiate synapse loss, has been extensively studied in rodent neurons, hippocampal slices, and in vivo mouse models of human neurodegenerative diseases such as Alzheimer's disease (AD). In these systems, rod formation induced by disease-associated factors, such as soluble oligomers of Amyloid-ß (Aß) in AD, utilizes a pathway requiring cellular prion protein (PrPC), NADPH oxidase (NOX), and cytokine/chemokine receptors (CCR5 and/or CXCR4). However, rod pathways have not been systematically assessed in a human neuronal model. Here, we characterize glutamatergic neurons differentiated from human-induced pluripotent stem cells (iPSCs) for the formation of rods in response to activators of the PrPC-dependent pathway. Optimization of substratum, cell density, and use of glial-conditioned medium yielded a robust system for studying the development of Aß-induced rods in the absence of glia, suggesting a cell-autonomous pathway. Rod induction in younger neurons requires ectopic expression of PrPC, but this dependency disappears by Day 55. The quantification of proteins within the rod-inducing pathway suggests that increased PrPC and CXCR4 expression may be factors in the doubling of the rod response to Aß between Days 35 and 55. FDA-approved antagonists to CXCR4 and CCR5 inhibit the rod response. Rods were predominantly observed in dendrites, although severe cytoskeletal disruptions prevented the assignment of over 40% of the rods to either an axon or dendrite. In the absence of glia, a condition in which rods are more readily observed, neurons mature and fire action potentials but do not form functional synapses. However, PSD95-containing dendritic spines associate with axonal regions of pre-synaptic vesicles containing the glutamate transporter, VGLUT1. Thus, our results identified stem cell-derived neurons as a robust model for studying cofilactin rod formation in a human cellular environment and for developing effective therapeutic strategies for the treatment of dementias arising from multiple proteinopathies with different rod initiators.

5.
J Biol Chem ; 299(12): 105361, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37865312

ABSTRACT

In recent years, elegant glycomic and glycoproteomic approaches have revealed an intricate glycosylation profile of mammalian brain with enormous spatial and temporal diversities. Nevertheless, at a cellular level, it is unclear how these post-translational modifications affect various proteins to influence crucial neuronal properties. Here, we have investigated the impact of N-linked glycosylation on neuroligins (NLGNs), a class of cell-adhesion molecules that play instructive roles in synapse organization. We found that endogenous NLGN proteins are differentially glycosylated across several regions of murine brain in a sex-independent but isoform-dependent manner. In both rodent primary neurons derived from brain sections and human neurons differentiated from stem cells, all NLGN variants were highly enriched with multiple N-glycan subtypes, which cumulatively ensured their efficient trafficking to the cell surface. Removal of these N-glycosylation residues only had a moderate effect on NLGNs' stability or expression levels but particularly enhanced their retention at the endoplasmic reticulum. As a result, the glycosylation-deficient NLGNs exhibited considerable impairments in their dendritic distribution and postsynaptic accumulation, which in turn, virtually eliminated their ability to recruit presynaptic terminals and significantly reduced NLGN overexpression-induced assemblies of both glutamatergic and GABAergic synapse structures. Therefore, our results highlight an essential mechanistic contribution of N-linked glycosylations in facilitating the appropriate secretory transport of a major synaptic cell-adhesion molecule and promoting its cellular function in neurons.


Subject(s)
Neuroligins , Synapses , Animals , Humans , Mice , Glycosylation , Neuroligins/genetics , Neuroligins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Synapses/metabolism , Neurons/metabolism , Cells, Cultured , Polysaccharides/metabolism , Protein Transport/physiology
6.
Methods Mol Biol ; 2593: 265-281, 2023.
Article in English | MEDLINE | ID: mdl-36513938

ABSTRACT

Fluorescence microscopy of cytoskeletal proteins in situ using immunolabeling, fluorescent reagents, or expression of tagged proteins has been a common practice for decades but often with too little regard for what might not be visualized. This is especially true for assembled filamentous actin (F-actin), for which binding of fluorescently labeled phalloidin is taken as the gold standard for its quantification even though it is well known that F-actin saturated with cofilin (cofilactin) binds neither fluorescently labeled phalloidin nor genetically encoded F-actin reporters, such as LifeAct. Here, using expressed fluorescent cofilactin reporters, we show that cofilactin is the major component of some actin-containing structures in both normal and stressed neurons and present various fixation, permeabilization, and cryo-preservation methods for optimizing its observation.


Subject(s)
Actin Depolymerizing Factors , Actins , Actin Depolymerizing Factors/metabolism , Actins/metabolism , Phalloidine/metabolism , Actin Cytoskeleton/metabolism , Fluorescent Antibody Technique
7.
Cells ; 10(10)2021 10 12.
Article in English | MEDLINE | ID: mdl-34685706

ABSTRACT

Proteins of the actin depolymerizing factor (ADF)/cofilin family are ubiquitous among eukaryotes and are essential regulators of actin dynamics and function. Mammalian neurons express cofilin-1 as the major isoform, but ADF and cofilin-2 are also expressed. All isoforms bind preferentially and cooperatively along ADP-subunits in F-actin, affecting the filament helical rotation, and when either alone or when enhanced by other proteins, promotes filament severing and subunit turnover. Although self-regulating cofilin-mediated actin dynamics can drive motility without post-translational regulation, cells utilize many mechanisms to locally control cofilin, including cooperation/competition with other proteins. Newly identified post-translational modifications function with or are independent from the well-established phosphorylation of serine 3 and provide unexplored avenues for isoform specific regulation. Cofilin modulates actin transport and function in the nucleus as well as actin organization associated with mitochondrial fission and mitophagy. Under neuronal stress conditions, cofilin-saturated F-actin fragments can undergo oxidative cross-linking and bundle together to form cofilin-actin rods. Rods form in abundance within neurons around brain ischemic lesions and can be rapidly induced in neurites of most hippocampal and cortical neurons through energy depletion or glutamate-induced excitotoxicity. In ~20% of rodent hippocampal neurons, rods form more slowly in a receptor-mediated process triggered by factors intimately connected to disease-related dementias, e.g., amyloid-ß in Alzheimer's disease. This rod-inducing pathway requires a cellular prion protein, NADPH oxidase, and G-protein coupled receptors, e.g., CXCR4 and CCR5. Here, we will review many aspects of cofilin regulation and its contribution to synaptic loss and pathology of neurodegenerative diseases.


Subject(s)
Actin Depolymerizing Factors/metabolism , Actins/metabolism , Nerve Degeneration/pathology , Neurons/metabolism , Actin Depolymerizing Factors/chemistry , Amino Acid Sequence , Animals , Humans , Neurites/metabolism , Neurogenesis
8.
PLoS One ; 16(3): e0248309, 2021.
Article in English | MEDLINE | ID: mdl-33705493

ABSTRACT

Nearly 50% of individuals with long-term HIV infection are affected by the onset of progressive HIV-associated neurocognitive disorders (HAND). HIV infiltrates the central nervous system (CNS) early during primary infection where it establishes persistent infection in microglia (resident macrophages) and astrocytes that in turn release inflammatory cytokines, small neurotoxic mediators, and viral proteins. While the molecular mechanisms underlying pathology in HAND remain poorly understood, synaptodendritic damage has emerged as a hallmark of HIV infection of the CNS. Here, we report that the HIV viral envelope glycoprotein gp120 induces the formation of aberrant, rod-shaped cofilin-actin inclusions (rods) in cultured mouse hippocampal neurons via a signaling pathway common to other neurodegenerative stimuli including oligomeric, soluble amyloid-ß and proinflammatory cytokines. Previous studies showed that synaptic function is impaired preferentially in the distal proximity of rods within dendrites. Our studies demonstrate gp120 binding to either chemokine co-receptor CCR5 or CXCR4 is capable of inducing rod formation, and signaling through this pathway requires active NADPH oxidase presumably through the formation of superoxide (O2-) and the expression of cellular prion protein (PrPC). These findings link gp120-mediated oxidative stress to the generation of rods, which may underlie early synaptic dysfunction observed in HAND.


Subject(s)
Actin Depolymerizing Factors/metabolism , Actins/metabolism , HIV Envelope Protein gp120/metabolism , HIV Infections/metabolism , HIV-1/metabolism , Hippocampus/metabolism , NADPH Oxidases/metabolism , Neurons/metabolism , PrPC Proteins/metabolism , Receptors, CCR5/metabolism , Receptors, CXCR4/metabolism , Actin Depolymerizing Factors/genetics , Actins/genetics , Animals , HIV Envelope Protein gp120/genetics , HIV Infections/genetics , HIV-1/genetics , Mice , Mice, Knockout , NADPH Oxidases/genetics , Oxidative Stress/genetics , PrPC Proteins/genetics , Receptors, CCR5/genetics , Receptors, CXCR4/genetics
9.
Mol Biol Cell ; 31(21): 2363-2378, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32816614

ABSTRACT

Nuclear envelope proteins influence cell cytoarchitecure by poorly understood mechanisms. Here we show that small interfering RNA-mediated silencing of lamin A/C (LMNA) promotes contrasting stress fiber assembly and disassembly in individual cells and within cell populations. We show that LMNA-deficient cells have elevated myosin-II bipolar filament accumulations, irregular formation of actin comet tails and podosome-like adhesions, increased steady state nuclear localization of the mechanosensitive transcription factors MKL1 and YAP, and induced expression of some MKL1/serum response factor-regulated genes such as that encoding myosin-IIA (MYH9). Our studies utilizing live cell imaging and pharmacological inhibition of myosin-II support a mechanism of deregulated myosin-II self-organizing activity at the nexus of divergent actin cytoskeletal aberrations resulting from LMNA loss. In light of our results, we propose a model of how the nucleus, via linkage to the cytoplasmic actomyosin network, may act to control myosin-II contractile behavior through both mechanical and transcriptional feedback mechanisms.


Subject(s)
Actin Cytoskeleton/metabolism , Lamin Type A/metabolism , Myosin Type II/metabolism , Nuclear Envelope/metabolism , Cell Line , Cell Line, Tumor , Gene Expression Regulation , HeLa Cells , Humans , Lamin Type A/deficiency , Myosin Type II/genetics
10.
Curr HIV Res ; 16(4): 258-269, 2018.
Article in English | MEDLINE | ID: mdl-30280668

ABSTRACT

The implementation of combination antiretroviral therapy (cART) as the primary means of treatment for HIV infection has achieved a dramatic decline in deaths attributed to AIDS and the reduced incidence of severe forms of HIV-associated neurocognitive disorders (HAND) in infected individuals. Despite these advances, milder forms of HAND persist and prevalence of these forms of neurocognitive impairment are rising with the aging population of HIV infected individuals. HIV enters the CNS early in the pathophysiology establishing persistent infection in resident macrophages and glial cells. These infected cells, in turn, secrete neurotoxic viral proteins, inflammatory cytokines, and small metabolites thought to contribute to neurodegenerative processes. The viral envelope protein gp120 has been identified as a potent neurotoxin affecting neurodegeneration via indirect and direct mechanisms involving interactions with chemokine co-receptors CCR5 and CXCR4. This short review focuses on gp120 neurotropism and associated mechanisms of neurotoxicity linked to chemokine receptors CCR5 and CXCR4 with a new perspective on plasma membrane lipid rafts as an active participant in gp120-mediated neurodegeneration underlying HIV induced CNS pathology.


Subject(s)
AIDS-Associated Nephropathy/physiopathology , HIV Envelope Protein gp120/toxicity , Membrane Microdomains/metabolism , Neurons/pathology , Receptors, CCR5/metabolism , Receptors, CXCR4/metabolism , HIV Envelope Protein gp120/metabolism , Humans
11.
PLoS One ; 13(10): e0198709, 2018.
Article in English | MEDLINE | ID: mdl-30325927

ABSTRACT

Functional impairment after brain ischemia results in part from loss of neuronal spines and dendrites, independent of neuronal death. Cofilin-actin rods are covalently linked aggregates of cofilin-1 and actin that form in neuronal processes (neurites) under conditions of ATP depletion and oxidative stress, and which cause neurite degeneration if not disassembled. ATP depletion and oxidative stress occur with differing severity, duration, and time course in different ischemic conditions. Here we evaluated four mouse models of brain ischemia to define the conditions that drive formation of cofilin-actin rods. Three of the models provide early reperfusion: transient middle cerebral artery occlusion (MCAo), transient bilateral common carotid artery occlusion (CCAo), and cardiac arrest / cardiopulmonary resuscitation (CA/CPR). Early reperfusion restores ATP generating capacity, but also induces oxidative stress. The fourth model, photothrombotic cortical infarction, does not provide reperfusion. Cofilin-actin rods were formed in each of these models, but with differing patterns. Where acute reperfusion occurred, rod formation was maximal within 4 hours after reperfusion. Where infarction occurred, rods continued to form for at least 24 hours after ischemic onset, and extended into the adjacent non-ischemic tissue. Interventions that limit cofilin-actin rod formation may help to preserve integrity of neuronal processes in permanent ischemia.


Subject(s)
Actins/metabolism , Brain Ischemia/metabolism , Cofilin 1/metabolism , Protein Aggregation, Pathological/metabolism , Actins/analysis , Actins/ultrastructure , Animals , Brain Ischemia/pathology , Cells, Cultured , Cofilin 1/analysis , Cofilin 1/ultrastructure , Disease Models, Animal , Male , Mice, Inbred C57BL , Neurons/metabolism , Neurons/pathology , Oxidative Stress , Protein Aggregation, Pathological/pathology
12.
Eur J Pharmacol ; 818: 400-409, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-29154934

ABSTRACT

The current study was conducted to compare the cytotoxicity of two stereospecific cephalostatin 1 analogues (CAs) against several human normal cell types and cancer cell lines and to determine their cytotoxic mechanism. Both CA analogues induced apoptosis and were cytotoxic with 50% growth inhibition (GI50) at ~1µM or less in six human cancer cell lines but neither analogue at 10µM killed more than 14% of any of three types of normal human cells suggesting their cytotoxicity is cancer-specific. CA treatment inhibited clonogenic tumor growth and activated caspase 3 and 9 but not caspase 8. CA-induced apoptosis was inhibited by the pan caspase inhibitor indicating the importance of caspase activation. CA treatment released smac/DIABLO but not cytochrome c from mitochondria and induced phosphorylation of eIF-2 and the activation of procaspase 4 in cancer cells, similar to cell treatment with thapsigargin, a known endoplasmic reticulum (ER) stress inducer. Finally, cells pretreated with a caspase 4 inhibitor were resistant to CA-induced apoptosis. In conclusion, both CAs induced apoptosis by triggering ER stress. Because of their ease of synthesis and low GI50, these cephalostatin analogues represent promising anticancer drugs.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Phenazines/chemistry , Phenazines/pharmacology , Signal Transduction/drug effects , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Steroids/chemistry , Steroids/pharmacology , Apoptosis Regulatory Proteins , Caspases, Initiator/metabolism , Cell Proliferation/drug effects , Enzyme Activation/drug effects , Humans , Intracellular Signaling Peptides and Proteins/metabolism , K562 Cells , MCF-7 Cells , Mitochondrial Proteins/metabolism
13.
Pharmacol Ther ; 175: 17-27, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28232023

ABSTRACT

Cofilin is a ubiquitous protein which cooperates with many other actin-binding proteins in regulating actin dynamics. Cofilin has essential functions in nervous system development including neuritogenesis, neurite elongation, growth cone pathfinding, dendritic spine formation, and the regulation of neurotransmission and spine function, components of synaptic plasticity essential for learning and memory. Cofilin's phosphoregulation is a downstream target of many transmembrane signaling processes, and its misregulation in neurons has been linked in rodent models to many different neurodegenerative and neurological disorders including Alzheimer disease (AD), aggression due to neonatal isolation, autism, manic/bipolar disorder, and sleep deprivation. Cognitive and behavioral deficits of these rodent models have been largely abrogated by modulation of cofilin activity using viral-mediated, genetic, and/or small molecule or peptide therapeutic approaches. Neuropathic pain in rats from sciatic nerve compression has also been reduced by modulating the cofilin pathway within neurons of the dorsal root ganglia. Neuroinflammation, which occurs following cerebral ischemia/reperfusion, but which also accompanies many other neurodegenerative syndromes, is markedly reduced by peptides targeting specific chemokine receptors, which also modulate cofilin activity. Thus, peptide therapeutics offer potential for cost-effective treatment of a wide variety of neurological disorders. Here we discuss some recent results from rodent models using therapeutic peptides with a surprising ability to cross the rodent blood brain barrier and alter cofilin activity in brain. We also offer suggestions as to how neuronal-specific cofilin regulation might be achieved.


Subject(s)
Cofilin 1/metabolism , Nervous System Diseases/metabolism , Peptides/pharmacology , Animals , Brain/metabolism , Humans , Nervous System Diseases/drug therapy , Peptides/administration & dosage , Peptides/therapeutic use , Reactive Oxygen Species/metabolism
14.
Sci Rep ; 7: 40953, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28102353

ABSTRACT

Structural features of the nucleus including shape, size and deformability impact its function affecting normal cellular processes such as cell differentiation and pathological conditions such as tumor cell migration. Despite the fact that abnormal nuclear morphology has long been a defining characteristic for diseases such as cancer relatively little is known about the mechanisms that control normal nuclear architecture. Mounting evidence suggests close coupling between F-actin cytoskeletal organization and nuclear morphology however, mechanisms regulating this coupling are lacking. Here we identify that Cofilin/ADF-family F-actin remodeling proteins are essential for normal nuclear structure in different cell types. siRNA mediated silencing of Cofilin/ADF provokes striking nuclear defects including aberrant shapes, nuclear lamina disruption and reductions to peripheral heterochromatin. We provide evidence that these anomalies are primarily due to Rho kinase (ROCK) controlled excessive contractile myosin-II activity and not to elevated F-actin polymerization. Furthermore, we demonstrate a requirement for nuclear envelope LINC (linker of nucleoskeleton and cytoskeleton) complex proteins together with lamin A/C for nuclear aberrations induced by Cofilin/ADF loss. Our study elucidates a pivotal regulatory mechanism responsible for normal nuclear structure and which is expected to fundamentally influence nuclear function.


Subject(s)
Actin Depolymerizing Factors/metabolism , Cell Nucleus Shape , Cell Nucleus/metabolism , Myosin Type II/metabolism , Cell Line , Humans , Mechanotransduction, Cellular , rho-Associated Kinases/metabolism
15.
J Vis Exp ; (130)2017 12 28.
Article in English | MEDLINE | ID: mdl-29364208

ABSTRACT

Cultured rodent brain slices are useful for studying the cellular and molecular behavior of neurons and glia in an environment that maintains many of their normal in vivo interactions. Slices obtained from a variety of transgenic mouse lines or use of viral vectors for expression of fluorescently tagged proteins or reporters in wild type brain slices allow for high-resolution imaging by fluorescence microscopy. Although several methods have been developed for imaging brain slices, combining slice culture with the ability to perform repetitive high-resolution imaging of specific cells in live slices over long time periods has posed problems. This is especially true when viral vectors are used for expression of exogenous proteins since this is best done in a closed system to protect users and prevent cross contamination. Simple modifications made to the roller tube brain slice culture method that allow for repetitive high-resolution imaging of slices over many weeks in an enclosed system are reported. Culturing slices on photoetched coverslips permits the use of fiducial marks to rapidly and precisely reposition the stage to image the identical field over time before and after different treatments. Examples are shown for the use of this method combined with specific neuronal staining and expression to observe changes in hippocampal slice architecture, viral-mediated neuronal expression of fluorescent proteins, and the development of cofilin pathology, which was previously observed in the hippocampus of Alzheimer's disease (AD) in response to slice treatment with oligomers of amyloid-ß (Aß) peptide.


Subject(s)
Brain/cytology , Tissue Culture Techniques/methods , Alzheimer Disease/pathology , Animals , Brain/pathology , Brain/surgery , Hippocampus/cytology , Hippocampus/pathology , Hippocampus/surgery , Humans , Mice , Microscopy, Confocal
16.
Cytoskeleton (Hoboken) ; 73(9): 477-97, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26873625

ABSTRACT

Cytoskeletal abnormalities and synaptic loss, typical of both familial and sporadic Alzheimer disease (AD), are induced by diverse stresses such as neuroinflammation, oxidative stress, and energetic stress, each of which may be initiated or enhanced by proinflammatory cytokines or amyloid-ß (Aß) peptides. Extracellular Aß-containing plaques and intracellular phospho-tau-containing neurofibrillary tangles are postmortem pathologies required to confirm AD and have been the focus of most studies. However, AD brain, but not normal brain, also have increased levels of cytoplasmic rod-shaped bundles of filaments composed of ADF/cofilin-actin in a 1:1 complex (rods). Cofilin, the major ADF/cofilin isoform in mammalian neurons, severs actin filaments at low cofilin/actin ratios and stabilizes filaments at high cofilin/actin ratios. It binds cooperatively to ADP-actin subunits in F-actin. Cofilin is activated by dephosphorylation and may be oxidized in stressed neurons to form disulfide-linked dimers, required for bundling cofilin-actin filaments into stable rods. Rods form within neurites causing synaptic dysfunction by sequestering cofilin, disrupting normal actin dynamics, blocking transport, and exacerbating mitochondrial membrane potential loss. Aß and proinflammatory cytokines induce rods through a cellular prion protein-dependent activation of NADPH oxidase and production of reactive oxygen species. Here we review recent advances in our understanding of cofilin biochemistry, rod formation, and the development of cognitive deficits. We will then discuss rod formation as a molecular pathway for synapse loss that may be common between all three prominent current AD hypotheses, thus making rods an attractive therapeutic target. © 2016 Wiley Periodicals, Inc.


Subject(s)
Actin Cytoskeleton/metabolism , Actin Depolymerizing Factors/metabolism , Actins/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Actin Cytoskeleton/pathology , Adenosine Diphosphate/metabolism , Alzheimer Disease/pathology , Animals , Biological Transport, Active , Humans , Protein Multimerization
17.
J Am Coll Cardiol ; 65(12): 1199-1214, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25814227

ABSTRACT

BACKGROUND: Recently, tangles and plaque-like aggregates have been identified in certain cases of dilated cardiomyopathy (DCM), traditionally labeled idiopathic (iDCM), where there is no specific diagnostic test or targeted therapy. This suggests a potential underlying cause for some of the iDCM cases. [Corrected] OBJECTIVES: This study sought to identify the make-up of myocardial aggregates to understand the molecular mechanisms of these cases of DCM; this strategy has been central to understanding Alzheimer's disease. METHODS: Aggregates were extracted from human iDCM samples with high congophilic reactivity (an indication of plaque presence), and the findings were validated in a larger cohort of samples. We tested the expression, distribution, and activity of cofilin in human tissue and generated a cardiac-specific knockout mouse model to investigate the functional impact of the human findings. We also modeled cofilin inactivity in vitro by using pharmacological and genetic gain- and loss-of-function approaches. RESULTS: Aggregates in human myocardium were enriched for cofilin-2, an actin-depolymerizing protein known to participate in neurodegenerative diseases and nemaline myopathy. Cofilin-2 was predominantly phosphorylated, rendering it inactive. Cardiac-specific haploinsufficiency of cofilin-2 in mice recapitulated the human disease's morphological, functional, and structural phenotype. Pharmacological stimulation of cofilin-2 phosphorylation and genetic overexpression of the phosphomimetic protein promoted the accumulation of "stress-like" fibers and severely impaired cardiomyocyte contractility. CONCLUSIONS: Our study provides the first biochemical characterization of prefibrillar myocardial aggregates in humans and the first report to link cofilin-2 to cardiomyopathy. The findings suggest a common pathogenetic mechanism connecting certain iDCMs and other chronic degenerative diseases, laying the groundwork for new therapeutic strategies.


Subject(s)
Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/physiopathology , Cofilin 2/genetics , Gene Expression Regulation , Adult , Aged , Animals , Cardiomyopathy, Dilated/surgery , Cofilin 2/metabolism , Female , Frozen Sections , Heart Transplantation , Humans , Male , Mice , Mice, Knockout , Middle Aged , Myocardium/cytology , Phosphorylation/genetics , Phosphorylation/physiology , Sampling Studies , Sensitivity and Specificity
18.
Prion ; 8(6): 375-80, 2014.
Article in English | MEDLINE | ID: mdl-25426519

ABSTRACT

Increasing evidence suggests that proteins exhibiting "prion-like" behavior cause distinct neurodegenerative diseases, including inherited, sporadic and acquired types. The conversion of cellular prion protein (PrP(C)) to its infectious protease resistant counterpart (PrP(Res)) is the essential feature of prion diseases. However, PrP(C) also performs important functions in transmembrane signaling, especially in neurodegenerative processes. Beta-amyloid (Aß) synaptotoxicity and cognitive dysfunction in mouse models of Alzheimer disease are mediated by a PrP(C)-dependent pathway. Here we review how this pathway converges with proinflammatory cytokine signaling to activate membrane NADPH oxidase (NOX) and generate reactive oxygen species (ROS) leading to dynamic remodeling of the actin cytoskeleton. The NOX signaling pathway may also be integrated with those of other transmembrane receptors clustered in PrP(C)-enriched membrane domains. Such a signal convergence along the PrP(C)-NOX axis could explain the relevance of PrP(C) in a broad spectrum of neurodegenerative disorders, including neuroinflammatory-mediated alterations in synaptic function following traumatic brain injury. PrP(C) overexpression alone activates NOX and generates a local increase in ROS that initiates cofilin activation and formation of cofilin-saturated actin bundles (rods). Rods sequester cofilin from synaptic regions where it is required for plasticity associated with learning and memory. Rods can also interrupt vesicular transport by occluding the neurite within which they form. Through either or both mechanisms, rods may directly mediate the synaptic dysfunction that accompanies various neurodegenerative disorders.


Subject(s)
Amyloid beta-Peptides/chemistry , Cofilin 1/metabolism , Neurons/metabolism , Prions/chemistry , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Brain/metabolism , Brain/pathology , Cell Membrane/metabolism , Cytoskeleton/metabolism , Disease Models, Animal , Epitopes/chemistry , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Transgenic , NADPH Oxidases/metabolism , Neurodegenerative Diseases/metabolism , Protein Structure, Tertiary , Reactive Oxygen Species/metabolism , Signal Transduction
19.
PLoS One ; 9(4): e95995, 2014.
Article in English | MEDLINE | ID: mdl-24760020

ABSTRACT

Neurites of neurons under acute or chronic stress form bundles of filaments (rods) containing 1∶1 cofilin∶actin, which impair transport and synaptic function. Rods contain disulfide cross-linked cofilin and are induced by treatments resulting in oxidative stress. Rods form rapidly (5-30 min) in >80% of cultured hippocampal or cortical neurons treated with excitotoxic levels of glutamate or energy depleted (hypoxia/ischemia or mitochondrial inhibitors). In contrast, slow rod formation (50% of maximum response in ∼6 h) occurs in a subpopulation (∼20%) of hippocampal neurons upon exposure to soluble human amyloid-ß dimer/trimer (Aßd/t) at subnanomolar concentrations. Here we show that proinflammatory cytokines (TNFα, IL-1ß, IL-6) also induce rods at the same rate and within the same neuronal population as Aßd/t. Neurons from prion (PrP(C))-null mice form rods in response to glutamate or antimycin A, but not in response to proinflammatory cytokines or Aßd/t. Two pathways inducing rod formation were confirmed by demonstrating that NADPH-oxidase (NOX) activity is required for prion-dependent rod formation, but not for rods induced by glutamate or energy depletion. Surprisingly, overexpression of PrP(C) is by itself sufficient to induce rods in over 40% of hippocampal neurons through the NOX-dependent pathway. Persistence of PrP(C)-dependent rods requires the continuous activity of NOX. Removing inducers or inhibiting NOX activity in cells containing PrP(C)-dependent rods causes rod disappearance with a half-life of about 36 min. Cofilin-actin rods provide a mechanism for synapse loss bridging the amyloid and cytokine hypotheses for Alzheimer disease, and may explain how functionally diverse Aß-binding membrane proteins induce synaptic dysfunction.


Subject(s)
Amyloid beta-Peptides/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Neurites/metabolism , PrPC Proteins/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Actin Depolymerizing Factors/metabolism , Actins/metabolism , Animals , Cells, Cultured , Dactinomycin/pharmacology , Female , Gene Expression Regulation/drug effects , Glutamic Acid/pharmacology , Humans , Inflammation/metabolism , Mice , NADPH Oxidases/metabolism , PrPC Proteins/genetics , Rats , Synaptic Transmission/drug effects
20.
BMC Cell Biol ; 14: 45, 2013 Oct 05.
Article in English | MEDLINE | ID: mdl-24093776

ABSTRACT

BACKGROUND: ADF/cofilin proteins are key modulators of actin dynamics in metastasis and invasion of cancer cells. Here we focused on the roles of ADF and cofilin-1 individually in the development of polarized migration of rat mammary adenocarcinoma (MTLn3) cells, which express nearly equal amounts of each protein. Small interference RNA (siRNA) technology was used to knockdown (KD) the expression of ADF and cofilin-1 independently. RESULTS: Either ADF KD or cofilin KD caused cell elongation, a reduction in cell area, a decreased ability to form invadopodia, and a decreased percentage of polarized cells after 180 s of epidermal growth factor stimulation. Moreover, ADF KD or cofilin KD increased the rate of cell migration and the time of lamellipodia protrusion but through different mechanisms: lamellipodia protrude more frequently in ADF KD cells and are more persistent in cofilin KD cells. ADF KD cells showed a significant increase in F-actin aggregates, whereas cofilin KD cells showed a significant increase in prominent F-actin bundles and increased cell adhesion. Focal adhesion area and cell adhesion in cofilin KD cells were returned to control levels by expressing exogenous cofilin but not ADF. Return to control rates of cell migration in ADF KD cells was achieved by expression of exogenous ADF but not cofilin, whereas in cofilin KD cells, expression of cofilin efficiently rescued control migration rates. CONCLUSION: Although ADF and cofilin have many redundant functions, each of these isoforms has functional differences that affect F-actin structures, cell adhesion and lamellipodial dynamics, all of which are important determinants of cell migration.


Subject(s)
Actins/metabolism , Adenocarcinoma/metabolism , Cofilin 1/genetics , Destrin/genetics , Gene Expression Regulation, Neoplastic , Mammary Neoplasms, Animal/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Actins/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Cell Adhesion/drug effects , Cell Movement , Cofilin 1/antagonists & inhibitors , Cofilin 1/metabolism , Destrin/antagonists & inhibitors , Destrin/metabolism , Epidermal Growth Factor/pharmacology , Female , Focal Adhesions/drug effects , Focal Adhesions/metabolism , Focal Adhesions/ultrastructure , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Neoplasm Metastasis , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats , Signal Transduction , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...