Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
RSC Adv ; 13(39): 27016-27035, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37693089

ABSTRACT

Selective P-glycoprotein (P-gp)-targeted fluorescent conjugates are desirable tools to investigate the role of P-gp, a protein strongly implicated in mediating multidrug resistance and a major cause of chemotherapy failure. Herein, we report the development of 25 novel fluorescent small-molecule conjugates with varying physicochemical and optical properties, and their biological evaluation in a cell model as P-gp targeted constructs. This investigation revealed relationships between molecular structure and cell behavior and uncovered the capacity of conjugates with varying fluorophores to selectively target P-gp. Sulfocyanine 3 labeled conjugates (5, 10, 24, 29, 34) showed a particular intracellular staining pattern. Other conjugates bearing a boron dipyrromethene (BODIPY) core (3, 8, 13, 22, 27 (BODIPY FL), 12 (BODIPY 564/570) and 4, 9 (BODIPY 650/665)) or a 7-nitrobenz-2-oxa-1,3-diazole (NBD) core (11, 30) showed potential for global P-gp direct detection and quantification. These fluorescent conjugates holds key advantages over existing methods for drug resistance evaluation with regards to P-gp expression and could be used as innovative tools in preclinical assays and clinical diagnosis.

2.
Cancers (Basel) ; 13(16)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34439204

ABSTRACT

P-gp is the most widely studied MDR protein conferring cellular resistance to many standard or targeted therapeutic agents. For this reason, P-gp chemoresistance evaluation, established before or during chemotherapy, can be very relevant in order to optimize the efficacy of treatments, particularly for aggressive tumoral subtypes such as triple-negative breast cancer (TNBC). In this context, our team developed an innovative cell-permeant fluorescent probe called the LightSpot®-FL-1, which is able to specifically localize and quantify the P-gp in cells or cell masses, as evidenced on different TNBC cell models. First, flow cytometry analysis showed LightSpot®-FL-1 cell penetration and persistence in time, in TNBC cells. Then, LightSpot®-FL-1 staining was compared to anti-P-gp immunostaining by fluorescence microscopy on five TNBC cell lines. Results showed a clear similarity of P-gp localization and expression level, confirmed by Pearson's and Mander's colocalization coefficients with 92.1% and 100.0%, and a strong correlation coefficient of R2 = 0.99. In addition, the LightSpot®-FL-1 staining allowed the quantification of a P-gp induction (33% expression increase) following a 6-hour spheroid model exposure to the anti-PARP Olaparib. Thus, the new LightSpot®-FL-1 cell-permeant probe, targeting P-gp, appears to be an effective tool for drug resistance evaluation in preclinical models and shows promising possibilities for future use in clinical diagnosis.

3.
Cancers (Basel) ; 13(8)2021 Apr 18.
Article in English | MEDLINE | ID: mdl-33919619

ABSTRACT

Cancer spheroids are very effective preclinical models to improve anticancer drug screening. In order to optimize and extend the use of spheroid models, these works were focused on the development of a new storage concept to maintain these models in the longer term using the Triple-Negative Breast Cancer MDA-MB-231 spheroid models. The results highlight that the combination of a temperature of 4 °C and oxygen-free conditions allowed the spheroid characteristics of OptiPASS® serum-free culture medium to preserve the spheroid characteristics during 3-, 5- or 7-day-long storage. Indeed, after storage they were returned to normal culture conditions, with recovered spheroids presenting similar growth rates (recovery = 96.2%), viability (Live/Dead® profiles) and metabolic activities (recovery = 90.4%) compared to nonstored control spheroids. Likewise, both recovered spheroids (after storage) and nonstored controls presented the same response profiles as two conventional drugs, i.e., epirubicin and cisplatin, and two anti-PARP1 targeted drugs-i.e., olaparib and veliparib. This new original storage concept seems to induce a temporary stop in spheroid growth while maintaining their principal characteristics for further use. In this way, this innovative and simple storage concept may instigate future biological sample preservation strategies.

4.
Sci Rep ; 10(1): 6367, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286420

ABSTRACT

Triple-negative breast cancers (TNBC) are unlikely to respond to hormonal therapies and anti-HER2-targeted therapies. TNBCs overexpress EGFR and exhibit constitutive activation of the PI3K/AKT/mTOR signalling pathway. We hypothesized that simultaneously blocking EGFR and mTOR could be a potential therapeutic strategy for the treatment of TNBC. We examined the antitumour activity of the mTOR inhibitor everolimus combined with the EGFR tyrosine kinase inhibitor gefitinib in TNBC cell with or without activating mutations in the PI3K/AKT/mTOR signalling pathway. We demonstrated that everolimus and gefitinib induced synergistic growth inhibition in the PI3K and PTEN-mutant CAL-51 cell line but not in the PTEN-null HCC-1937 cell line. The antiproliferative effect was associated with synergistic inhibition of mTOR and P70S6K phosphorylation, as well as a significant reduction in 4E-BP1 activation in the CAL-51 cell line. We also showed that combination therapy significantly inhibited cell cycle progression and increased apoptosis in this cell line. Gene and protein expression analysis revealed significant downregulation of cell cycle regulators after exposure to combined treatment. Collectively, these results suggested that dual inhibition of mTOR and EGFR may be an effective treatment for TNBC with activating mutations of PI3K.


Subject(s)
Everolimus/pharmacology , Gefitinib/pharmacology , TOR Serine-Threonine Kinases/genetics , Triple Negative Breast Neoplasms/drug therapy , Adaptor Proteins, Signal Transducing/genetics , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Molecular Targeted Therapy , Mutation/genetics , Phosphatidylinositol 3-Kinases/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/genetics , TOR Serine-Threonine Kinases/antagonists & inhibitors , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
5.
J Clin Med ; 8(3)2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30901969

ABSTRACT

Triple-negative breast cancers are particularly aggressive. In vitro cultures are one of the major pathways for developing anticancer strategies. The effectiveness and reproducibility of the drug screenings depend largely on the homogeneity of culture media. In order to optimize the predictive responses of triple-negative breast cancer 3D cell culture models, these works were focused on the development of SUM1315 and MDA-MB-231 cell lines in OptiPASS medium, a new serum-free formulation (BIOPASS). In monolayer cell culture, OptiPASS medium was more suitable for MDA-MB-231 than SUM1315 cell line but maintained cell phenotype and allowed sufficient proliferation. For spheroids produced in OptiPASS, the size monitoring showed a 1.3 and 1.5-fold increase for MDA-MB-231 and SUM1315 cell lines, respectively and viability/mortality profiles were maintained. Spheroids drug sensitivity thresholds were also improved allowing quicker high throughput drug screenings. These results showed the suitability of OptiPASS for 2D and 3D cell cultures of these two triple-negative breast cancer cell lines, with reproducibility of spheroid formation superior to 98%. This opens the way to the common use of this synthetic medium in future preclinical breast cancer research studies.

6.
J Clin Med ; 9(1)2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31888054

ABSTRACT

The Triple-Negative Breast Cancer subtype (TNBC) is particularly aggressive and heterogeneous. Thus, Poly-ADP-Ribose Polymerase inhibitors were developed to improve the prognosis of patients and treatment protocols are still being evaluated. In this context, we modelized the efficacy of Olaparib (i.e., 5 and 50 µM), combined with fractioned irradiation (i.e., 5 × 2 Gy) on two aggressive TNBC cell lines MDA-MB-231 (BRCAness) and SUM1315 (BRCA1-mutated). In 2D cell culture and for both models, the clonogenicity drop was 95-fold higher after 5 µM Olaparib and 10 Gy irradiation than Olaparib treatment alone and was only 2-fold higher after 50 µM and 10 Gy. Similar responses were obtained on TNBC tumor-like spheroid models after 10 days of co-treatment. Indeed, the ratio of metabolic activity decrease was of 1.2 for SUM1315 and 3.3 for MDA-MB-231 after 5 µM and 10 Gy and of only 0.9 (both models) after 50 µM and 10 Gy. MDA-MB-231, exhibiting a strong proliferation profile and an overexpression of AURKA, was more sensitive to the co-treatment than SUM1315 cell line, with a stem-cell like phenotype. These results suggest that, with the studied models, the potentiation of Olaparib treatment could be reached with low-dose and long-term exposure combined with fractioned irradiation.

7.
J Pharm Biomed Anal ; 152: 74-80, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29414021

ABSTRACT

Olaparib is a potent PARP inhibitor in clinical use for cancer therapy. A bioanalytical assay was developed and validated for quantitation of intracellular level of olaparib in cells exposed to the drug. The assay involves an optimized and straightforward sample pretreatment with acetonitrile for olaparib solubilization, cell lysis and protein precipitation, and a high performance liquid chromatography (HPLC) method with ultraviolet detection. Several parameters in both the sample preparation and the detection steps were investigated. Optimal chromatographic conditions were achieved with a 5 µL injection on a Nova-Pak® C18 column (150 × 3.9 mm, 4 µm) using a mobile phase consisting of acetonitrile and ultra-pure water in gradient mode, at a constant 1.2 mL/min flow rate, at 35 °C. Detection was carried out at 254 nm and a diode array detector was used to insure purity of the olaparib peak. The method was validated according to Food and Drug Administration guidelines. Linearity, accuracy and precisions were satisfactory over the concentration range of 200-2000 ng/mL. Limits of detection and quantification for olaparib were 50 ng/mL and 200 ng/mL, respectively. Good stability was showed in three relevant analytical conditions. Finally, the validated analytical method was successfully used to estimate the intracellular level of olaparib in SUM1315 breast cancer cells. A significant difference was observed in intracellular drug level after 1 and 3 h incubations. This method permitting measurement of drug level in tumor cells would allow dosage optimization and improvement of treatment response predictions.


Subject(s)
Chromatography, High Pressure Liquid/methods , Phthalazines/chemistry , Piperazines/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Cell Line, Tumor , Humans , Limit of Detection , Reproducibility of Results , Sensitivity and Specificity
8.
Oncotarget ; 8(56): 95316-95331, 2017 11 10.
Article in English | MEDLINE | ID: mdl-29221130

ABSTRACT

Triple-Negative Basal-Like tumors, representing 15 to 20% of breast cancers, are very aggressive and with poor prognosis. Targeted therapies have been developed extensively in preclinical and clinical studies to open the way for new treatment strategies. The present study has focused on developing 3D cell cultures from SUM1315 and MDA-MB-231, two triple-negative basal-like (TNBL) breast cancer cell lines, using the liquid overlay technique. Extracellular matrix concentration, cell density, proliferation, cell viability, topology and ultrastructure parameters were determined. The results showed that for both cell lines, the best conditioning regimen for compact and homogeneous spheroid formation was to use 1000 cells per well and 2% Geltrex®. This conditioning regimen highlighted two 3D cell models: non-proliferative SUM1315 spheroids and proliferative MDA-MB-231 spheroids. In both cell lines, the comparison of 2D vs 3D cell culture viability in the presence of increasing concentrations of chemotherapeutic agents i.e. cisplatin, docetaxel and epirubicin, showed that spheroids were clearly less sensitive than monolayer cell cultures. Moreover, a proliferative or non-proliferative 3D cell line property would enable determination of cytotoxic and/or cytostatic drug activity. 3D cell culture could be an excellent tool in addition to the arsenal of techniques currently used in preclinical studies.

9.
Biomarkers ; 22(6): 566-574, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28583029

ABSTRACT

CONTEXT: P-glycoprotein (P-gp) is a ubiquitous membrane detoxification pump involved in cellular defence against xenobiotics. Blood is a hub for the trade and transport of physiological molecules and xenobiotics. Our recent studies have highlighted the expression of a 140-kDa P-gp in brown trout erythrocytes in primary cell culture and its dose-dependent response to Benzo[a]pyrene pollutant. OBJECTIVE: The purpose of this study was focused on using P-gp expression in brown trout erythrocytes as a biomarker for detecting the degree of river pollution. METHODS: abcb1 gene and P-gp expression level were analysed by reverse transcriptase-PCR and Western blot, in the erythrocytes of brown trouts. The latter were collected in upstream and downstream of four rivers in which 17 polycyclic aromatic hydrocarbons and 348 varieties of pesticides micro-residues were analysed by liquid chromatography and mass spectrometry. RESULTS: The abcb1 gene and the 140-kDa P-gp were not expressed in trout erythrocytes from uncontaminated river. In contrast, they are clearly expressed in contaminated rivers, in correlation with the river pollution degree and the nature of the pollutants. CONCLUSIONS: This biological tool may offer considerable advantages since it provides an effective response to the increasing need for an early biomarker.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/analysis , Biomarkers/chemistry , Erythrocytes/metabolism , Water Pollution, Chemical/analysis , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Biomarkers/analysis , Environmental Monitoring/methods , Gene Expression , Pesticide Residues/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Rivers/chemistry , Trout
10.
Mol Carcinog ; 56(5): 1383-1394, 2017 05.
Article in English | MEDLINE | ID: mdl-27864890

ABSTRACT

Increased epidermal growth factor receptor (EGFR) expression in triple-negative breast cancer (TNBC) is recognized as a promising therapeutic target, specifically through the use of selective EGFR inhibitors combined with chemotherapies. TNBC is characterized by genetic instability that leads to increased sensitivity to cytotoxic agents. We analyzed the effect of anti-EGFR monoclonal antibodies (mAbs; cetuximab and panitumumab) in combination with chemotherapeutic agents (docetaxel, cisplatin, and epirubicin) on EGFR-expressing TNBC cell lines that have different mutation statuses for one oncogene (KRAS) and two tumor suppressor genes (PTEN and BRCA1). Both mAbs failed to improve the cytotoxic effect of chemotherapies in the KRAS mutant cell line (MDA-MB-231) and PTEN-null cell lines (HCC-1937 and MDA-MB-468). In contrast, mAbs combined with DNA-damaging agents (cisplatin or epirubicin) had a synergistic effect in the BRCA1-mutant cell line SUM-1315 (wild-type KRAS and PTEN). The reintroduction of wild-type BRCA1 into SUM-1315 cells abolished this synergism. The improved effect of combination therapy was associated with cell cycle arrest at G1 phase and inhibition of the phosphorylation of EGFR and ERK1/2 proteins. These results suggest that patients with BRCA1-associated TNBC without genetic alterations in the PTEN and KRAS genes may have improved therapeutic responses to anti-EGFR mAbs combined with DNA-damaging agents. © 2017 Wiley Periodicals, Inc.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , ErbB Receptors/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Antibodies, Monoclonal/administration & dosage , BRCA1 Protein/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cetuximab/administration & dosage , Cisplatin/administration & dosage , DNA Damage/drug effects , DNA Damage/genetics , Docetaxel , ErbB Receptors/immunology , Female , Humans , Molecular Targeted Therapy/methods , Mutation , PTEN Phosphohydrolase/genetics , Panitumumab , Taxoids/administration & dosage , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
11.
Oncotarget ; 7(45): 73618-73637, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27655662

ABSTRACT

Triple-negative breast cancer (TNBC) is characterized by overexpression of epidermal growth factor receptor (EGFR) and activation of its downstream signaling pathways. Dual targeting of EGFR using one monoclonal antibody (mAb; cetuximab or panitumumab) and one tyrosine kinase inhibitor (EGFR-TKI; gefitinib or erlotinib) is a potential therapeutic approach. We investigated the effect of these therapies in EGFR-expressing TNBC cell lines that do or do not harbor the main activating mutations of EGFR pathways. Cell lines were sensitive to EGFR-TKIs, whereas mAbs were active only in MDA-MB-468 (EGFR amplification) and SUM-1315 (KRAS and PTEN wild-type) cells. MDA-MB-231 (KRAS mutated) and HCC-1937 (PTEN deletion) cells were resistant to mAbs. The combined treatment resulted in a synergistic effect on cell proliferation and superior inhibition of the RAS/MAPK signaling pathway in mAb-sensitive cells. The anti-proliferative effect was associated with G1 cell cycle arrest followed by apoptosis. Sensitivity to therapies was characterized by induction of positive regulators and inactivation of negative regulators of cell cycle. These results suggest that dual EGFR inhibition might result in an enhanced antitumor effect in a subgroup of TNBC. The status of EGFR, KRAS and PTEN could be used as a molecular marker for predicting the response to this therapeutic strategy.


Subject(s)
Antibodies, Monoclonal/pharmacology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Protein Kinase Inhibitors/pharmacology , Triple Negative Breast Neoplasms/metabolism , Antibodies, Monoclonal/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cyclins/genetics , Female , G1 Phase Cell Cycle Checkpoints/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inhibitory Concentration 50 , Mitogen-Activated Protein Kinases/metabolism , Molecular Targeted Therapy , Phosphorylation , Protein Kinase Inhibitors/administration & dosage , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , ras Proteins/metabolism
12.
Sci Rep ; 5: 12670, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26234720

ABSTRACT

The triple negative basal-like (TNBL) breast carcinoma is an aggressive and unfavorable prognosis disease. Inhibitors of poly(ADP-ribose) polymerase such as Olaparib could represent a promising targeted therapy but their sensitivity against Multidrug Resistance proteins (MDR), which causes resistance, is not well defined. Thus, our work focused on the analysis of P-gp and BCRP coexpression in the SUM1315 TNBL human cell line, in correlation with Olaparib intracellular concentration. Western blot analyses showed a clear coexpression of P-gp and BCRP in SUM1315 cells. A low cytotoxic Olaparib treatment clearly led to an increased expression of both BCRP and P-gp in these cells. Indeed, after 1.5 h of treatment, BCRP expression was increased with a 1.8 fold increase rate. Then, P-gp took over from 3 h to 15 h with an average increase rate of 1.8 fold, and finally returned to control value at 24 h. HPLC-UV analyses showed that, in the same treatment conditions, the intracellular Olaparib concentration increased from 1 h to 3 h and remained relatively stable until 24 h. Results suggest that the resistance mechanism induced by Olaparib in TNBL SUM1315 cell line may be overpassed if a cytotoxic and stable intracellular level of the drug can be maintained.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP-Binding Cassette Transporters/metabolism , Antineoplastic Agents/pharmacology , Carcinoma/metabolism , Neoplasm Proteins/metabolism , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Triple Negative Breast Neoplasms/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/genetics , Drug Resistance, Neoplasm , Female , Humans , Neoplasm Proteins/genetics , Up-Regulation
13.
Leuk Res ; 39(3): 329-34, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25612940

ABSTRACT

We investigated Syk as a potential marker of CML progression. We observed a significant over-expression of Syk mRNA and constitutive phosphorylation of Syk Y348 in blast cells from six AP or BP-CML, but not in 15 CML in chronic phase. We could follow in vivo the recurrence of pSyk(348) throughout blast cell escape, despite observing storage of dasatinib in blast cells. A combination of dasatinib and R406 did not improve therapeutic efficacy in vitro. Our results strongly suggest that Syk activation could be a relevant biomarker of disease progression and dasatinib resistance but is probably not a molecular target.


Subject(s)
Blast Crisis , Intracellular Signaling Peptides and Proteins/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Protein-Tyrosine Kinases/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols , Biomarkers, Tumor , Child , Chronic Disease , Dasatinib , Disease Progression , Female , Flow Cytometry , Follow-Up Studies , Humans , Intracellular Signaling Peptides and Proteins/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Male , Middle Aged , Oxazines/pharmacology , Phosphorylation , Prognosis , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/genetics , Pyridines/pharmacology , Pyrimidines/pharmacology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Survival Rate , Syk Kinase , Thiazoles/pharmacology , Tumor Cells, Cultured , Young Adult
14.
Diagnostics (Basel) ; 5(1): 10-26, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-26854141

ABSTRACT

In aquatic organisms, such as fish, blood is continually exposed to aquatic contaminants. Multidrug Resistance (MDR) proteins are ubiquitous detoxification membrane pumps, which recognize various xenobiotics. Moreover, their expression is induced by a large class of drugs and pollutants. We have highlighted the co-expression of a mini P-gp of 75 kDa and a P-gp of 140 kDa in the primary culture of brown trout erythrocytes and in the erythrocytes of wild brown trout collected from three rivers in the Auvergne region of France. In vitro experiments showed that benzo[a]pyrene, a highly toxic pollutant model, induced the co-expression of mini-P-gp and P-gp in trout erythrocytes in a dose-dependent manner and relay type response. Similarly, in the erythrocytes of wild brown trout collected from rivers contaminated by a mixture of PAH and other multi-residues of pesticides, mini-P-gp and P-gp were able to modulate their expression, according to the nature of the pollutants. The differential and complementary responses of mini-P-gp and P-gp in trout erythrocytes suggest the existence in blood cells of a real protective network against xenobiotics/drugs. This property could be exploited to develop a blood biomarker of river pollution.

15.
Sci Rep ; 3: 3422, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24305632

ABSTRACT

Blood is a site of physiological transport for a great variety of molecules, including xenobiotics. Blood cells in aquatic vertebrates, such as fish, are directly exposed to aquatic pollution. P-gp are ubiquitous "membrane detoxification proteins" implicated in the cellular efflux of various xenobiotics, such as polycyclic aromatic hydrocarbons (PAHs), which may be pollutants. The existence of this P-gp detoxification system inducible by benzo [a] pyrene (BaP), a highly cytotoxic PAH, was investigated in the nucleated erythrocytes of brown trout. Western blot analysis showed the expression of a 140-kDa P-gp in trout erythrocytes. Primary cultures of erythrocytes exposed to increasing concentrations of BaP showed no evidence of cell toxicity. Yet, in the same BaP-treated erythrocytes, P-gp expression increased significantly in a dose-dependent manner. Brown trout P-gp erythrocytes act as membrane defence mechanism against the pollutant, a property that can be exploited for future biomarker development to monitor water quality.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Erythrocytes/metabolism , Gene Expression , Trout/genetics , Trout/metabolism , Animals , Benzo(a)pyrene/metabolism , Cell Culture Techniques , Inactivation, Metabolic
16.
Cytometry A ; 81(11): 996-1004, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22930640

ABSTRACT

One of the essential parameters of targeted therapy efficiency in cancer treatment is the amount of drug reaching the therapeutic target area. Imatinib (IM) was the first specifically targeted drug to be developed and has revolutionized the treatment of patients with chronic myeloid leukemia (CML). To evaluate cellular uptake of IM, we developed a method based on the chemical structure of the molecule and using the natural UV fluorescence that we quantified by flow cytometry. In two CML cell lines, we obtained a satisfactory relationship between intracellular IM (ICIM) levels and media concentrations, and we found a strong correlation between ICIM at 1 h and IM efficacy at 24 h, demonstrating that ICIM at 1 h might be a relevant predictive parameter of cell sensitivity. Our method was more sensitive than the standard physicochemical method. We applied our method to primary cells and found cell morphology-dependent IM accumulation. Moreover, in CML cells from patients at diagnosis, IM accumulation was heterogeneous. In all cases, ICIM at the single-cell level was much higher than in culture media arguing in favor of a predominantly active uptake process. We developed a simple method directly applicable to primary cells that has shown two major advantages: only a small number of cells are required, and cell subsets can be identified according to morphological criteria and/or the presence of particular antigenic sites. This method provides a new tool to assess CML cell sensitivity to IM, and ICIM levels in native CML cells could be used to monitor therapeutic response.


Subject(s)
Flow Cytometry/methods , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Piperazines/pharmacokinetics , Pyrimidines/pharmacokinetics , Antineoplastic Agents/pharmacokinetics , Benzamides , Cell Shape , Culture Media/metabolism , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor/methods , Fluorescence , Humans , Imatinib Mesylate , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood , Piperazines/blood , Pyrimidines/blood , Sensitivity and Specificity , Ultraviolet Rays
17.
Environ Toxicol Chem ; 26(7): 1418-24, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17665681

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are a major source of air, water, and soil pollution. The multidrug resistance (mdr)/permeability glycoprotein (P-gp) complex is implicated in the multidrug resistance pattern developed against various drugs and xenobiotics, including polycyclic aromatic hydrocarbons. In order to develop a genomic biomarker, we investigated the response of the mdr49 gene (mdr49) of Drosophila melanogaster to PAHs. Structural analysis of mdr49-PA, which is the putative protein expressed from Drosophila mdr49 gene, demonstrated that this transmembrane protein indeed belongs to the adenosine triphosphate-binding cassette transporter superfamily. Polymerase chain reaction (PCR) and real-time PCR analysis revealed that the mdr49 gene is expressed continuously at all the stages of fly development, including embryos, pupae, larvae, and adults, as well as in embryonic Drosophila S12 cells. In the adult fly, the mdr49 gene was expressed in all the analyzed segments (head, thorax, and abdomen) and organs (olfactory and sexual organs). The quantification of mdr49 transcripts by real-time PCR in adult flies exposed to benzo[a]pyrene over time or in presence of increasing concentrations of this pollutant showed a clear dose-dependent response. Similarly, mdr49 gene expression increased after adult flies were exposed to structurally varied PAHs. The detection of tested PAHs by Drosophila P-gp efflux pump was checked by flow cytometry.


Subject(s)
Biomarkers/analysis , Drosophila melanogaster/genetics , Drug Resistance, Multiple/genetics , Genome , Polycyclic Compounds/analysis , Amino Acid Sequence , Animals , Base Sequence , Cell Line , DNA Primers , Molecular Sequence Data , Polymerase Chain Reaction
18.
Environ Toxicol Chem ; 25(2): 572-80, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16519321

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are well-known ubiquitous environmental contaminants. Permeability glycoprotein (P-gp) is a transmembrane detoxification efflux pump transporting various lipophilic xenobiotics, such as PAHs, out of the cells. The existence of a P-gp detoxification system inducible by PAHs was investigated in Drosophila melanogaster. Western blot experiments showed that D. melanogaster expressed a 140-kDa P-gp in S12 cells, embryos, and adult flies. Permeability glycoprotein was expressed in adult flies in the head, abdomen, and thorax and sublocalized in the sexual and olfactory organs. Flow cytometry experiments using Drosophila S12 cells in the presence of PAHs and target P-gp drug compounds revealed that Drosophila P-gp acted as an efflux detoxification pump. In Drosophila exposed to benzo[a]pyrene or to ambient air polluted by higher or lower PAH concentrations, P-gp expression was clearly showed a dose-dependent increase response. The P-gp induction was detected both in adult flies and in different fly parts, such as the head, thorax, and antennae. Drosophila P-gp acts as a membrane barrier against PAH pollutants.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology , Drosophila Proteins/physiology , Environmental Pollutants/pharmacokinetics , Polycyclic Aromatic Hydrocarbons/pharmacokinetics , Age Factors , Animals , Cell Membrane/drug effects , Cell Membrane/physiology , Drosophila melanogaster/physiology , Flow Cytometry , Gene Expression Profiling , Inactivation, Metabolic
SELECTION OF CITATIONS
SEARCH DETAIL
...