Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 12(24)2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31817326

ABSTRACT

Changes in pH at electrode surfaces can occur when redox reactions involving the production or consumption of protons take place. Many redox reactions of biological or analytical importance are proton-coupled, resulting in localized interfacial pH changes as the reaction proceeds. Other important electrochemical reactions, such as hydrogen and oxygen evolution reactions, can likewise result in pH changes near the electrode. However, it is very difficult to measure pH changes located within around 100 µm of the electrode surface. This paper describes the use of in situ attenuated total reflectance (ATR) infrared (IR) spectroscopy to determine the pH of different solutions directly at the electrode interface, while a potential is applied. Changes in the distinctive IR bands of solution phosphate species are used as an indicator of pH change, given that the protonation state of the phosphate ions is pH-dependent. We found that the pH at the surface of an electrode modified with carbon nanotubes can increase from 4.5 to 11 during the hydrogen evolution reaction, even in buffered solutions. The local pH change accompanying the hydroquinone-quinone redox reaction is also determined.

SELECTION OF CITATIONS
SEARCH DETAIL
...