Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Neural Netw Learn Syst ; 34(11): 8815-8824, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35259117

ABSTRACT

The exploitation of deep neural networks (DNNs) as descriptors in feature learning challenges enjoys apparent popularity over the past few years. The above tendency focuses on the development of effective loss functions that ensure both high feature discrimination among different classes, as well as low geodesic distance between the feature vectors of a given class. The vast majority of the contemporary works rely their formulation on an empirical assumption about the feature space of a network's last hidden layer, claiming that the weight vector of a class accounts for its geometrical center in the studied space. This article at hand follows a theoretical approach and indicates that the aforementioned hypothesis is not exclusively met. This fact raises stability issues regarding the training procedure of a DNN, as shown in our experimental study. Consequently, a specific symmetry is proposed and studied both analytically and empirically that satisfies the above assumption, addressing the established convergence issues. More specifically, the aforementioned symmetry suggests that all weight vectors are unit, coplanar, and their vector summation equals zero. Such a layout is proven to ensure a more stable learning curve compared against the corresponding ones succeeded by popular models in the field of feature learning.

2.
IEEE Trans Pattern Anal Mach Intell ; 44(10): 6823-6838, 2022 10.
Article in English | MEDLINE | ID: mdl-34232863

ABSTRACT

One of the most prominent attributes of Neural Networks (NNs) constitutes their capability of learning to extract robust and descriptive features from high dimensional data, like images. Hence, such an ability renders their exploitation as feature extractors particularly frequent in an abundance of modern reasoning systems. Their application scope mainly includes complex cascade tasks, like multi-modal recognition and deep Reinforcement Learning (RL). However, NNs induce implicit biases that are difficult to avoid or to deal with and are not met in traditional image descriptors. Moreover, the lack of knowledge for describing the intra-layer properties -and thus their general behavior- restricts the further applicability of the extracted features. With the paper at hand, a novel way of visualizing and understanding the vector space before the NNs' output layer is presented, aiming to enlighten the deep feature vectors' properties under classification tasks. Main attention is paid to the nature of overfitting in the feature space and its adverse effect on further exploitation. We present the findings that can be derived from our model's formulation and we evaluate them on realistic recognition scenarios, proving its prominence by improving the obtained results.


Subject(s)
Algorithms , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...