Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35808615

ABSTRACT

In an organic circular economy, biodegradable materials can be used as food packaging, and at end-of-life their carbon atoms can be recovered for soil enrichment after composting, so that new food or materials can be produced. Packaging functionality, such as mechanical, gas barrier, and heat-seal performance, of emerging biodegradable packaging, with a laminated, coated, monomaterial, and/or blended structure, is not yet well known in the food industry. This lack of knowledge, in addition to end-of-life concerns, high cost, and production limits is one of the main bottlenecks for broad implementation in the food industry. This study determines application areas of 10 films with a pragmatic approach based on an experimental broad characterization of packaging functionality. As a conclusion, the potential application of these materials is discussed with respect to industrial settings and food and consumer requirements, to support the implementation of commercially available, biodegradable, and, more specifically, compostable, materials for the identified food applications.

2.
Ultrason Sonochem ; 32: 68-78, 2016 09.
Article in English | MEDLINE | ID: mdl-27150747

ABSTRACT

The Villermaux-Dushman reaction is a widely used technique to study micromixing efficiencies with and without sonication. This paper shows that ultrasound can interfere with this reaction by sonolysis of potassium iodide, which is excessively available in the Villermaux-Dushman solution, into triiodide ions. Some corrective actions, to minimize this interference, are proposed. Furthermore, the effect of ultrasonic frequency, power dissipation, probe tip surface area and stirring speed on micromixing were investigated. The power and frequency seem to have a significant impact on micromixing in contrast to the stirring speed and probe tip surface area. Best micromixing was observed with a 24kHz probe and high power intensities. Experiments with different frequencies but a constant power intensity, emitter surface, stirring speed, cavitation bubble type and reactor design showed best micromixing for the highest frequency of 1135kHz. Finally, these results were used to test the power law model of Rahimi et al. This model was not able to predict micromixing accurately and the addition of the frequency, as an additional parameter, was needed to improve the simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...