Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(34): 23669-23681, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37555101

ABSTRACT

To ensure the safe transportation and efficient utilisation of lignite, it is important to inhibit its spontaneous combustion. In this study, Shengli lignite (SL+) was used as the research object and ionic liquids (ILs) were used to pretreat the lignite to investigate their effect on the combustion performance of lignite. On this basis, the relationship between the structure and combustion performance of lignite with different structures (heat treatment, oxidation) after ILs treatment was investigated. Results indicated that the combustion of lignite treated with ILs shifted towards higher temperatures. The most pronounced effect was observed in coal samples treated with [BMIM]Cl (1-butyl-3-methylimidazolium chloride), with the maximum combustion rate corresponding to a temperature increase of approximately 57 °C compared to that of the untreated lignite. For the heat-treated lignite, the temperature corresponding to the maximum combustion rate was approximately 38 °C higher than that of the untreated lignite. After [BMIM]Cl treatment, the combustion performance of the heat-treated lignite changed very slightly. In contrast, for oxidised lignite, the temperature corresponding to the maximum combustion rate decreased by approximately 54 °C compared with that of the untreated lignite and increased by approximately 135 °C after treatment with [BMIM]Cl. The characterisation results show that the content of aliphatic hydrogen and oxygen-containing functional groups decreased in the heat-treated lignite, while the content of hydroxyl and carboxyl groups increased in the oxidised lignite. The microstructure of the heat-treated lignite after [BMIM]Cl treatment changed slightly. In contrast, in the oxidised lignite after [BMIM]Cl treatment, the content of hydroxyl and carboxyl groups decreased, whereas the content of ether (C-O-) structures increased. The increased content of ether (C-O-) structures improved the stability of the coal samples. It is believed that the inhibition of lignite combustion is mainly attributed to the high stability of the ether (C-O-) structures. The kinetic analysis demonstrated that the ILs treatment increased the activation energy of lignite combustion.

2.
RSC Adv ; 10(6): 3479-3486, 2020 Jan 16.
Article in English | MEDLINE | ID: mdl-35497742

ABSTRACT

Due to the low utilization efficiency of lignite as a primary energy source, the valuable and clean use of lignite becomes important. Oxidative depolymerization of lignite into valuable organic acids (VOAs) has been identified to be feasible, but the difficulty in separating VOAs from the complex lignite depolymerized mixture (LDM) limits the potential application of this route. In this study, based on the coordination interactions between metal ions and carboxylate groups in VOAs, the metal ion-induced separation of VOAs from the LDM was proposed. The results proved that most of the studied metal ions (M n+) could selectively form M-VOA precipitates with the VOAs in LDM and transferred the VOAs from the water phase into the solid precipitates. Then, the intermediate M-VOAs could be dissolved in diluted NaOH solution to release the VOAs, with M n+ being transformed into M(OH) n . The separation yield and selectivity could be tuned facilely by various metal ions at different dosages, pH, and temperatures. The process could be fulfilled under near-room temperature in water without the use of organic solvents. Due to its efficiency, tunable selectivity, and green nature, the proposed separation strategy may find potential applications in the valuable and clean use of lignite sources.

3.
R Soc Open Sci ; 5(9): 180717, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30839688

ABSTRACT

The CO2 gasification of Chinese Shengli lignite (SL) catalysed by K+ and Ca2+ was studied. The results showed that calcium could greatly decrease the gasification reaction temperature of SL, and the gasification reaction rates of acid-treated SL catalysed by calcium were significantly higher than that catalysed by potassium. Kinetic analysis showed that the activation energy of the reaction catalysed by calcium was much lower than that catalysed by potassium, which was the reason for the higher catalytic activity of calcium. Fourier transform infrared characterization showed that, compared with acid-treated SL, the addition of K+/Ca2+ resulted in the significant weakening of C=O bond, and new peaks attributed to carboxylate species appeared. X-ray photoelectron spectroscopy results indicated that the numbers of C=O decreased after the metal ions were added, indicating the formation of metal-carboxylate complexes. Raman characterization showed that the I D1/I G values increased, suggesting more structural defects, which indicated that the reactivity of coal samples had a close relation with amorphous carbon structures. Ca2+ could interact with the carboxyl structure in lignite by both ionic forces and polycarboxylic coordination, while K+ interacted with carboxyl structure mainly via ionic forces.

SELECTION OF CITATIONS
SEARCH DETAIL
...