Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 193(12): 825, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34792659

ABSTRACT

This study aims at the functionalization of magnetic graphene oxide nanosheets and the binding of humic acid as a lead complex ligand. Graphene oxide nanosheets possess a large surface area and various carboxylic acid groups which can be activated easily by activating agents. Therefore, they are suitable to be used for the extraction of heavy metals. To have a better process of extracting lead ions, magnetic graphene oxide was used in this research. Humic acid, as a lead metal complex agent, has an amine functional group which can be bound to modified graphene oxide from one side. The process of constructing the nano-adsorbent proposed for the preconcentration of lead ions as well as its characterization was studied by infrared spectroscopy (IR), ultraviolet-visible spectroscopy (UV-visible), field emission scanning electron microscopy (FESEM), and vibrating sample magnetometry (VSM). The designed nano-adsorbent was tested to measure lead ions in simulated and real samples of sea water, fish, and oysters. The detection limit obtained in the simulated samples was 0.07 µg/L, and the linear range was 0.2-12 µg/L. The apparatus used to measure the ions was a flame atomic absorption device. In the analysis of the real samples, the values obtained through flame atomic absorption were compared with those obtained through furnace atomic absorption. The proposed technique is advantageous due to being cheap, precise, and sensitive for the trace measurement of lead ions.


Subject(s)
Graphite , Ostreidae , Animals , Environmental Monitoring , Humic Substances , Ions , Lead , Magnetic Phenomena , Solid Phase Extraction
2.
Mikrochim Acta ; 185(9): 405, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30094655

ABSTRACT

This paper reports on a sensitive and selective method for the detection of Michigan Cancer Foundation-7 (MCF-7) human breast cancer cells and MUC1 biomarker by using an aptamer-based sandwich assay. A biocompatible nanocomposite consisting of multiwall carbon nanotubes (MWCNT) and poly(glutamic acid) is placed on a glassy carbon electrode (GCE). The sandwich assay relies on the use of a mucin 1 (MUC1)-binding aptamer that is first immobilized on the surface of modified GCE. Another aptamer (labeled with silver nanoparticles) is applied for secondary recognition of MCF-7 cells in order to increase selectivity and produce an amplified signal. Differential pulse anodic stripping voltammetry was used to follow the electrochemical signal of the AgNPs. Under the optimal condition, the sensor responds to MCF-7 cells in the concentration range from 1.0 × 102 to 1.0 × 107 cells·mL-1 with a detection limit of 25 cells. We also demonstrate that the MUC1 tumor marker can be detected by the present biosensor. The assay is highly selective and sensitive, acceptably stable and reproducible. This warrants the applicability of the method to early diagnosis of breast cancer. Graphical abstract Schematic of the fabrication of an aptamer-based sandwich biosensor for Michigan Cancer Foundation-7 cells (MCF-7). A MWCNT-poly(glutamic acid) nanocomposite was used as a biocompatible matrix for MUC1-aptamer immobilization. Stripping voltammetry analysis of AgNPs was performed using aptamer conjugated AgNPs as signalling probe.


Subject(s)
Aptamers, Nucleotide/metabolism , Biosensing Techniques/methods , Breast Neoplasms/pathology , Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Polyglutamic Acid/chemistry , Silver/chemistry , Aptamers, Nucleotide/chemistry , Carbon/chemistry , Electrochemistry , Electrodes , Humans , Limit of Detection , MCF-7 Cells , Metal Nanoparticles/chemistry , Mucin-1/blood , Mucin-1/metabolism , Surface Properties
3.
Acta Chim Slov ; 65(2): 278-288, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29993090

ABSTRACT

In this study, a simple and novel electrochemical biosensor based on a glassy carbon electrode (GCE) modified with a composite of graphene oxide (GO) - silk fibroin nanofibers (SF) and gold nanoparticles (MCH/ssDNA/AuNPs/SF/GO/GCE) was developed for detection of DNA sequences. The fabrication processes of electrochemical biosensor were characterized by scanning electron microscopy (SEM), FT-IR and electrochemical methods. Some experimental conditions such as immobilization time of probe DNA and MCH incubation time, time and temperature of hybridization were optimized. The designed biosensor revealed a wide linear range of 1.0 × 10-16 - 1.0 × 10-8 mol L-1 and a low detection limit (3.3 × 10-17 mol L-1) for detection of BRCA1 5382 mutation by EIS technique. The designed biosensor revealed high selectivity for discrimination of the complementary (P1C) sequences from various non-complementary sequences of (P1nC1, P1nC2 and P1nC3). Also, the biosensor revealed a high reproducibility (RSD of 7.5% (n=4)) and high stability (92% of its initial response after 8 days). So, the fabricated biosensor has a suitable potential to be applied for detection of breast cancer sequences in the initial stages of the cancer.


Subject(s)
DNA/analysis , Fibroins/chemistry , Gold/chemistry , Graphite/chemistry , Metal Nanoparticles/chemistry , Base Sequence , Biosensing Techniques/methods , Electrochemical Techniques/methods , Electrodes , Limit of Detection , Nanocomposites/chemistry , Oligonucleotides/chemistry , Reproducibility of Results , Sensitivity and Specificity , Surface Properties
4.
Front Hum Neurosci ; 11: 477, 2017.
Article in English | MEDLINE | ID: mdl-29033807

ABSTRACT

Neuroarchitecture uses neuroscientific tools to better understand architectural design and its impact on human perception and subjective experience. The form or shape of the built environment is fundamental to architectural design, but not many studies have shown the impact of different forms on the inhabitants' emotions. This study investigated the neurophysiological correlates of different interior forms on the perceivers' affective state and the accompanying brain activity. To understand the impact of naturalistic three-dimensional (3D) architectural forms, it is essential to perceive forms from different perspectives. We computed clusters of form features extracted from pictures of residential interiors and constructed exemplary 3D room models based on and representing different formal clusters. To investigate human brain activity during 3D perception of architectural spaces, we used a mobile brain/body imaging (MoBI) approach recording the electroencephalogram (EEG) of participants while they naturally walk through different interior forms in virtual reality (VR). The results revealed a strong impact of curvature geometries on activity in the anterior cingulate cortex (ACC). Theta band activity in ACC correlated with specific feature types (rs (14) = 0.525, p = 0.037) and geometry (rs (14) = -0.579, p = 0.019), providing evidence for a role of this structure in processing architectural features beyond their emotional impact. The posterior cingulate cortex and the occipital lobe were involved in the perception of different room perspectives during the stroll through the rooms. This study sheds new light on the use of mobile EEG and VR in architectural studies and provides the opportunity to study human brain dynamics in participants that actively explore and realistically experience architectural spaces.

5.
Mikrochim Acta ; 185(1): 50, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29594398

ABSTRACT

This article describes an impedimetric aptasensor for the prostate specific antigen (PSA), a widely accepted prostate cancer biomarker. A glassy carbon electrode (GCE) was modified with titanium oxide nanoparticles (TiO2) and silk fibroin nanofiber (SF) composite. The aptasensor was obtained by immobilizing a PSA-binding aptamer on the AuNP-modified with 6-mercapto-1-hexanol. The single fabrication steps were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The assay has two linear response ranges (from 2.5 fg.mL-1 to 25 pg.mL-1, and from 25 pg.mL-1 to 25 ng.mL-1) and a 0.8 fg.mL -1 detection limit. After optimization of experimental conditions, the sensor is highly selective for PSA over bovine serum albumin and lysozyme. It was successfully applied to the detection of PSA in spiked serum samples. Graphical abstract Schematic of the fabrication of an aptasensor for the prostate specific antigen (PSA). It is based on the use of a glassy carbon electrode modified with gold nanoparticles and titanium oxide-silk fibroin. The immobilization process of aptamer and interaction with PSA were followed by electrochemical impedance spectroscopy technique.


Subject(s)
Aptamers, Nucleotide/chemistry , Electrochemical Techniques/methods , Prostate-Specific Antigen/analysis , Prostatic Neoplasms/diagnosis , Electrochemical Techniques/standards , Electrodes , Fibroins , Humans , Male , Metal Nanoparticles/chemistry , Molecular Probes/chemistry , Molecular Probes/standards , Nanofibers/chemistry , Spectrum Analysis , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...