Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
2.
Plant Cell Rep ; 42(1): 29-43, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36462028

ABSTRACT

KEY MESSAGE: This study demonstrates multi-gene silencing approach for simultaneous silencing of several functional genes through a fusion gene strategy for protecting plants against root-knot nematode, Meloidogyne incognita. The ability of root-knot nematode (RKN), Meloidogyne incognita, to cause extensive yield decline in a wide range of cultivated crops is well-documented. Due to the inadequacies of current management approaches, the alternatively employed contemporary RNA interference (RNAi)-based host-delivered gene silencing (HD-RNAi) strategy targeting different functional effectors/genes has shown substantial potential to combat RKNs. In this direction, we have explored the possibility of simultaneous silencing of four esophageal gland genes, six plant cell-wall modifying enzymes (PCWMEs) and a serine protease gene of M. incognita using the fusion approach. In vitro RNAi showed that combinatorial gene silencing is the most effective in affecting nematode behavior in terms of reduced attraction, penetration, development, and reproduction in tomato and adzuki beans. In addition, qRT-PCR analysis of M. incognita J2s soaked in fusion-dsRNA showed perturbed expression of all the genes comprising the fusion construct confirming successful dsRNA processing which is also supported by increased mRNA abundance of five key-RNAi pathway genes. In addition, hairpin RNA expressing constructs of multi-gene fusion cassettes were developed and used for generation of Nicotiana tabacum transgenic plants. The integration of gene constructs and expression of siRNAs in transgenic events were confirmed by Southern and Northern blot analyses. Besides, bio-efficacy analyses of transgenic events, conferred up to 87% reduction in M. incognita multiplication. Correspondingly, reduced transcript accumulation of the target genes in the M. incognita females extracted from transgenic events confirmed successful gene silencing.


Subject(s)
Nicotiana , Tylenchoidea , Animals , Female , RNA Interference , Nicotiana/genetics , Tylenchoidea/genetics , Gene Silencing , Plants, Genetically Modified/genetics , RNA, Double-Stranded/genetics , Plant Diseases/genetics
3.
Physiol Mol Biol Plants ; 28(11-12): 2023-2039, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36573153

ABSTRACT

The effects of sucking insect-pests on the morpho-physiological and biochemical changes in the leaves of four cotton genotypes-Bio 100 BG-II and GCH-3 (highly tolerant); KDCHH-9810 BG-II and HS-6 (highly susceptible)-were examined. Compared to tolerant genotypes, susceptible genotypes showed a decrease in relative water content, specific leaf weight, leaf area, photosynthetic rate, and total chlorophyll content, with an increase in electrolyte leakage. Hydrogen peroxide and total soluble sugar content were higher in susceptible plants. In contrast, resistant plants had higher levels of total soluble protein, total phenolic content, gossypol content, tannin content, peroxidase activity, and polyphenol oxidase. The findings demonstrated that the Bio 100 BG-II and GCH-3 genotypes effectively offset the impact of sucking insect-pests by modifying the factors mentioned above. The KDCHH-9810 BG-II and HS-6 genotypes could not completely negate the effects of sucking insect-pests. Customized metabolites and total soluble protein are more efficient in protecting cotton plants from damage brought on by infestations of sucking insects and pests. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01253-w.

4.
Nanomaterials (Basel) ; 12(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36080002

ABSTRACT

Meloidogyne incognita (root-knot nematode) is a devastating soil-borne pathogen which can infect almost all cultivated plants around the globe, expediting huge pecuniary losses. The purpose of current study was to use the aqueous root extract of Glycyrrhiza glabra for synthesizing silver nanoparticles (GRAgNPs) and assess their nematicidal potential against M. incognita by in vitro methods, including hatching inhibition and mortality assays. The active uptake of FITC labeled GRAgNPs by the nematode and their effect on the expression of selected genes involved in oxidative stress and DNA damage repair were also studied. An HRTEM micrograph confirmed their spherical morphology with sizes ranging from 9.61 nm to 34.735 nm. Complete inhibition of egg-hatching was observed after 48 h of treatment with as low as 10.0 ppm of GRAgNPs. In addition, 100% mortality was recorded at the lowest dose of 6.0 ppm, after 12 h of treatment. The LC-50 for GRAgNPs was found to be 0.805 ± 0.177 ppm at p < 0.0001, R2 = 0.9930, and α = 0.05. The expression of targeted genes (skn-1, mev-1, sod-3, dhs-23, cyp-450, xpa, cpr-1, gst-n, and ugt) was significantly enhanced (1.09−2.79 folds), at 1.0 ppm (α = 0.05, 95% CI) GRAgNPs treatment. In conclusion, GRAgNPs performed efficaciously and considerably in contrast to chemical nematicide and commercial silver nanoparticles (CAgNPs) and might be used as a promising alternative as relatively lower concentration and short exposure time were enough to cause higher mortality and nanotoxicity in nematodes.

5.
Plant Cell Rep ; 40(12): 2287-2302, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34387737

ABSTRACT

KEY MESSAGE: This study establishes possibility of combinatorial silencing of more than one functional gene for their efficacy against root-knot nematode, M. incognita. Root-knot nematodes (RKN) of the genus Meloidogyne are the key important plant parasitic nematodes (PPNs) in agricultural and horticultural crops worldwide. Among RKNs, M. incognita is the most notorious that demand exploration of novel strategies for their management. Due to its sustainable and target-specific nature, RNA interference (RNAi) has gained unprecedented importance to combat RKNs. However, based on the available genomic information and interaction studies, it can be presumed that RKNs are dynamic and not dependent on single genes for accomplishing a particular function. Therefore, it becomes extremely important to consider silencing of more than one gene to establish any synergistic or additive effect on nematode parasitism. In this direction, we have combined three effectors specific to subventral gland cells of M. incognita, Mi-msp1, Mi-msp16, Mi-msp20 as fusion cassettes-1 and two FMRFamide-like peptides, Mi-flp14, Mi-flp18, and Mi-msp20 as fusion cassettes-2 to establish their possible utility for M. incognita management. In vitro RNAi assay in tomato and adzuki bean using these two fusion gene negatively altered nematode behavior in terms of reduced attraction, invasion, development, and reproduction. Subsequently, Nicotiana tabacum plants were transformed with these two fusion gene hairpin RNA-expressing vectors (hpRNA), and characterized via PCR, qRT-PCR, and Southern blot hybridization. Production of siRNAs specific to Mi-flp18 and Mi-msp1 was also confirmed by Northern hybridization. Further, transgenic events expressing single copy insertions of hpRNA constructs of fusion 1 and fusion-2 conferred up to 85% reduction in M. incognita multiplication. Besides, expression quantification revealed a significant reduction in mRNA abundance of target genes (up to 1.8-fold) in M. incognita females extracted from transgenic plants, and provided additional evidence for successful gene silencing.


Subject(s)
Helminth Proteins/genetics , Host-Parasite Interactions/genetics , Nicotiana/genetics , RNA Interference , Tylenchoidea/genetics , Animals , Female , Gene Silencing , Solanum lycopersicum/genetics , Solanum lycopersicum/parasitology , Plants, Genetically Modified/genetics , RNA, Small Interfering/genetics , Recombinant Fusion Proteins/genetics , Reproducibility of Results , Nicotiana/parasitology , Tylenchoidea/pathogenicity , Vigna/genetics , Vigna/parasitology
6.
Front Microbiol ; 11: 573916, 2020.
Article in English | MEDLINE | ID: mdl-33193182

ABSTRACT

Root-knot nematode, Meloidogyne incognita, is a devastating sedentary endoparasite that causes considerable damage to agricultural crops worldwide. Modern approaches targeting the physiological processes have confirmed the potential of FMRFamide like peptide (FLPs) family of neuromotor genes for nematode management. Here, we assessed the knock down effect of Mi-flp1, Mi-flp12, and Mi-flp18 of M. incognita and their combinatorial fusion cassette on infection and reproduction. Comparative developmental profiling revealed higher expression of all three FLPs in the infective 2nd stage juveniles (J2s). Further, Mi-flp1 expression in J2s could be localized in the ventral pharyngeal nerves near to metacarpal bulb of the central nervous system. In vitro RNAi silencing of three FLPs and their fusion cassette in M. incognita J2s showed that combinatorial silencing is the most effective and affected nematode host recognition followed by reduced penetration ability and subsequent infection into tomato and adzuki bean roots. Northern blot analysis of J2s soaked in fusion dsRNA revealed the presence of siRNA of all three target FLPs establishing successful processing of fusion gene dsRNA in the J2s. Further, evaluation of the fusion gene cassette is done through host-delivered RNAi in tobacco. Transgenic plants with fusion gene RNA-expressing vector were generated in which transgene integration was confirmed by PCR, qRT-PCR, and Southern blot analysis. Transcript accumulation of three FLPs constituting the fusion gene was reduced in the M. incognita females collected from the transgenic plants that provided additional evidence for successful gene silencing. Evaluation of positive T1 transgenic lines against M. incognita brought down the disease burden as indicated by various disease parameters that ultimately reduced the nematode multiplication factor (MF) by 85% compared to the wild-type plants. The study establishes the possibility of simultaneous silencing of more than one FLPs gene for effective management of M. incognita.

7.
3 Biotech ; 10(8): 360, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32832322

ABSTRACT

Plant-parasitic root-knot nematode Meloidogyne incognita uses an array of effector proteins to establish successful plant infections. Mi-msp-1 and Mi-msp-20 are two known effectors secreted from nematode subventral oesophageal glands; Mi-msp-1 being a putative secretory venom allergen AG5-like protein, whereas Mi-msp-20 is a pioneer gene with a coiled-coil motif. Expression of specific effector is known to cause disturbances in the expression of other effectors. Here, we used RNA-Seq to investigate the pleiotropic effects of silencing Mi-msp-1 and Mi-msp-20. A total of 25.1-51.9 million HQ reads generated from Mi-msp-1 and Mi-msp-20 silenced second-stage juveniles (J2s) along with freshly hatched J2s were mapped to an already annotated M. incognita proteome to understand the impact on various nematode pathways. As compared to control, silencing of Mi-msp-1 caused differential expression of 29 transcripts, while Mi-msp-20 silencing resulted in differential expression of a broader set of 409 transcripts. In the Mi-msp-1 silenced J2s, cytoplasm (GO:0005737) was the most enriched gene ontology (GO) term, whereas in the Mi-msp-20 silenced worms, embryo development (GO:0009792), reproduction (GO:0000003) and nematode larval development (GO:0002119) were the most enriched terms. Limited crosstalk was observed between these two effectors as a sheer 5.9% of the up-regulated transcripts were common between Mi-msp-1 and Mi-msp-20 silenced nematodes. Our results suggest that in addition to the direct knock-down caused by silencing of Mi-msp-1 and Mi-msp-20, the cascading effect on other genes might also be contributing to a reduction in nematode's parasitic abilities.

8.
Gene ; 619: 50-60, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28366833

ABSTRACT

The rice root-knot nematode, Meloidogyne graminicola, seriously impairs the growth and yield of rice which is an important staple food worldwide. The disruption of neuropeptide signalling leading to attenuation in nematode behaviour and thereby perturbed infection, offers an attractive alternative to control nematodes. In this direction, the present study was aimed at mining of putative FMRFamide-like peptides (FLPs) from the transcriptomic dataset of M. graminicola followed by characterization of those FLPs via sequencing of PCR products, qRT-PCR and Southern hybridization analysis. We have characterized nine flp genes (flp-1, flp-3, flp-6, flp-7, flp-11, flp-12, flp-14, flp-16 and flp-18) and a partial neuropeptide receptor gene (flp-18 GPCR) from M. graminicola in the present study. In addition, in situ localization revealed the expression of flp-1 and flp-7 in neurons posterior to the circumpharyngeal nerve ring of M. graminicola. In vitro silencing of nine flp genes and flp-18 GPCR in M. graminicola J2 and their subsequent infection in rice and wheat roots demonstrated the reduced penetration ability of FLP silenced worms which underscores the potential of the FLPergic system as a broad-spectrum target to manage the root-knot nematode problem in rice-wheat cropping system.


Subject(s)
FMRFamide/genetics , Helminth Proteins/genetics , Tylenchoidea/genetics , Animals , FMRFamide/metabolism , Gene Silencing , Helminth Proteins/metabolism , Oryza/parasitology , Tylenchoidea/pathogenicity , Virulence/genetics
9.
Front Plant Sci ; 8: 473, 2017.
Article in English | MEDLINE | ID: mdl-28424727

ABSTRACT

The complex parasitic strategy of Meloidogyne incognita appears to involve simultaneous expression of its pharyngeal gland-specific effector genes in order to colonize the host plants. Research reports related to effector crosstalk in phytonematodes for successful parasitism of the host tissue is yet underexplored. In view of this, we have used in planta effector screening approach to understand the possible interaction of pioneer genes (msp-18 and msp-20, putatively involved in late and early stage of M. incognita parasitism, respectively) with other unrelated effectors such as cell-wall modifying enzymes (CWMEs) in M. incognita. Host-induced gene silencing (HIGS) strategy was used to generate the transgenic eggplants expressing msp-18 and msp-20, independently. Putative transformants were characterized via qRT-PCR and Southern hybridization assay. SiRNAs specific to msp-18 and msp-20 were also detected in the transformants via Northern hybridization assay. Transgenic expression of the RNAi constructs of msp-18 and msp-20 genes resulted in 43.64-69.68% and 41.74-67.30% reduction in M. incognita multiplication encompassing 6 and 10 events, respectively. Additionally, transcriptional oscillation of CWMEs documented in the penetrating and developing nematodes suggested the possible interaction among CWMEs and pioneer genes. The rapid assimilation of plant-derived carbon by invading nematodes was also demonstrated using 14C isotope probing approach. Our data suggests that HIGS of msp-18 and msp-20, improves nematode resistance in eggplant by affecting the steady-state transcription level of CWME genes in invading nematodes, and safeguard the plant against nematode invasion at very early stage because nematodes may become the recipient of bioactive RNA species during the process of penetration into the plant root.

10.
Sci Rep ; 6: 22846, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26961568

ABSTRACT

Rice is one of the major staple food crops in the world and an excellent model system for studying monocotyledonous plants. Diseases caused by nematodes in rice are well documented and among them, root-knot nematode (RKN), Meloidogyne graminicola, causes extensive yield decline. It is therefore necessary to identify novel sources of natural resistance to RKN in rice and to investigate the rice-RKN interaction in detail to understand the basal plant defence mechanisms and nematode manipulation of the host physiology. To this end, six different cultivars of rice were initially screened for RKN infection and development; Pusa 1121 and Vandana were found to be most susceptible and resistant to RKN infection, respectively. In order to investigate the role of major hormone-regulated plant defence pathways in compatible/incompatible rice-RKN interaction, some well-identified marker genes involved in salicylate/jasmonate/ethylene pathway were evaluated for their differential expression through qRT-PCR. In general, our study shows a remarkable discrepancy in the expression pattern of those genes between compatible and incompatible rice-RKN interaction. As most information on the molecular interplay between plants and nematodes were generated on dicotyledonous plants, the current study will strengthen our basic understanding of plant-nematode interaction in the monocot crops, which will aid in defining future strategies for best plant health measures.


Subject(s)
Oryza/parasitology , Tylenchoidea , Animals , Gene Expression Regulation, Plant , Oryza/genetics , Plant Diseases/parasitology , Plant Growth Regulators/metabolism , Plant Roots/parasitology
11.
BMC Genomics ; 17: 166, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26931371

ABSTRACT

BACKGROUND: Nematodes are the most numerous animals in the soil. Insect parasitic nematodes of the genus Heterorhabditis are capable of selectively seeking, infecting and killing their insect-hosts in the soil. The infective juvenile (IJ) stage of the Heterorhabditis nematodes is analogous to Caenorhabditis elegans dauer juvenile stage, which remains in 'arrested development' till it finds and infects a new insect-host in the soil. H. indica is the most prevalent species of Heterorhabditis in India. To understand the genes and molecular processes that govern the biology of the IJ stage, and to create a resource to facilitate functional genomics and genetic exploration, we sequenced the transcriptome of H. indica IJs. RESULTS: The de-novo sequence assembly using Velvet-Oases pipeline resulted in 13,593 unique transcripts at N50 of 1,371 bp, of which 53 % were annotated by blastx. H. indica transcripts showed higher orthology with parasitic nematodes as compared to free living nematodes. In-silico expression analysis showed 30 % of transcripts expressing with ≥100 FPKM value. All the four canonical dauer formation pathways like cGMP-PKG, insulin, dafachronic acid and TGF-ß were active in the IJ stage. Several other signaling pathways were highly represented in the transcriptome. Twenty-four orthologs of C. elegans RNAi pathway effector genes were discovered in H. indica, including nrde-3 that is reported for the first time in any of the parasitic nematodes. An ortholog of C. elegans tol-1 was also identified. Further, 272 kinases belonging to 137 groups, and several previously unidentified members of important gene classes were identified. CONCLUSIONS: We generated high-quality transcriptome sequence data from H. indica IJs for the first time. The transcripts showed high similarity with the parasitic nematodes, M. hapla, and A. suum as opposed to C. elegans, a species to which H. indica is more closely related. The high representation of transcripts from several signaling pathways in the IJs indicates that despite being a developmentally arrested stage; IJs are a hotbed of signaling and are actively interacting with their environment.


Subject(s)
Insecta/parasitology , Nematoda/genetics , Transcriptome , Animals , Gene Ontology , Genes, Helminth , Life Cycle Stages , Metabolic Networks and Pathways , RNA Interference , Signal Transduction
12.
Front Microbiol ; 6: 260, 2015.
Article in English | MEDLINE | ID: mdl-25883594

ABSTRACT

Root-knot nematodes (Meloidogyne incognita) cause substantial yield losses in vegetables worldwide, and are difficult to manage. Continuous withdrawal of environmentally-harmful nematicides from the global market warrants the need for novel nematode management strategies. Utility of host-delivered RNAi has been demonstrated in several plants (Arabidopsis, tobacco, and soybean) that exhibited resistance against root-knot and cyst nematodes. Herein, a M. incognita-specific protease gene, cathepsin L cysteine proteinase (Mi-cpl-1), was targeted to generate tomato transgenic lines to evaluate the genetically modified nematode resistance. In vitro knockdown of Mi-cpl-1 gene led to the reduced attraction and penetration of M. incognita in tomato, suggesting the involvement of Mi-cpl-1 in nematode parasitism. Transgenic expression of the RNAi construct of Mi-cpl-1 gene resulted in 60-80% reduction in infection and multiplication of M. incognita in tomato. Evidence for in vitro and in vivo silencing of Mi-cpl-1 was confirmed by expression analysis using quantitative PCR. Our study demonstrates that Mi-cpl-1 plays crucial role during plant-nematode interaction and plant-mediated downregulation of this gene elicits detrimental effect on M. incognita development, reinforcing the potential of RNAi technology for management of phytonematodes in crop plants.

13.
PLoS One ; 9(5): e96311, 2014.
Article in English | MEDLINE | ID: mdl-24802510

ABSTRACT

The cereal cyst nematode (CCN, Heterodera avenae) is a major pest of wheat (Triticum spp) that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two stages of H. avenae. After sequencing extracted RNA from pre parasitic infective juvenile and adult stages of the life cycle, 131 million Illumina high quality paired end reads were obtained which generated 27,765 contigs with N50 of 1,028 base pairs, of which 10,452 were annotated. Comparative analyses were undertaken to evaluate H. avenae sequences with those of other plant, animal and free living nematodes to identify differences in expressed genes. There were 4,431 transcripts common to H. avenae and the free living nematode Caenorhabditis elegans, and 9,462 in common with more closely related potato cyst nematode, Globodera pallida. Annotation of H. avenae carbohydrate active enzymes (CAZy) revealed fewer glycoside hydrolases (GHs) but more glycosyl transferases (GTs) and carbohydrate esterases (CEs) when compared to M. incognita. 1,280 transcripts were found to have secretory signature, presence of signal peptide and absence of transmembrane. In a comparison of genes expressed in the pre-parasitic juvenile and feeding female stages, expression levels of 30 genes with high RPKM (reads per base per kilo million) value, were analysed by qRT-PCR which confirmed the observed differences in their levels of expression levels. In addition, we have also developed a user-friendly resource, Heterodera transcriptome database (HATdb) for public access of the data generated in this study. The new data provided on the transcriptome of H. avenae adds to the genetic resources available to study plant parasitic nematodes and provides an opportunity to seek new effectors that are specifically involved in the H. avenae-cereal host interaction.


Subject(s)
Edible Grain/parasitology , Host-Parasite Interactions/genetics , Nematoda/genetics , Transcriptome/genetics , Triticum/parasitology , Animals , Gene Expression/genetics , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods
14.
Front Microbiol ; 5: 760, 2014.
Article in English | MEDLINE | ID: mdl-25628609

ABSTRACT

With the understanding of nematode-plant interactions at the molecular level, new avenues for engineering resistance have opened up, with RNA interference being one of them. Induction of RNAi by delivering double-stranded RNA (dsRNA) has been very successful in the model non-parasitic nematode, Caenorhabditis elegans, while in plant nematodes, dsRNA delivery has been accomplished by soaking nematodes with dsRNA solution mixed with synthetic neurostimulants. The success of in vitro RNAi of target genes has inspired the use of in planta delivery of dsRNA to feeding nematodes. The most convincing success of host-delivered RNAi has been achieved against root-knot nematodes. Plant-mediated RNAi has been shown to lead to the specific down-regulation of target genes in invading nematodes, which had a profound effect on nematode development. RNAi-based transgenics are advantageous as they do not produce any functional foreign proteins and target organisms in a sequence-specific manner. Although the development of RNAi-based transgenics against plant nematodes is still in the preliminary stage, they offer novel management strategy for the future.

15.
PLoS One ; 8(11): e80603, 2013.
Article in English | MEDLINE | ID: mdl-24223228

ABSTRACT

Root knot nematode, Meloidogyne incognita, is an obligate sedentary endoparasite that infects a large number of crop species and causes substantial yield losses. Non-chemical based control strategies for these nematodes are gaining importance. In the present study, we have demonstrated the significance of two FMRFamide like peptide genes (flp-14 and flp-18) for infection and development of resistance to M. incognita through host-derived RNAi. The study demonstrated both in vitro and in planta validation of RNAi-induced silencing of the two genes cloned from J2 stage of M. incognita. In vitro silencing of both the genes interfered with nematode migration towards the host roots and subsequent invasion into the roots. Transgenic tobacco lines were developed with RNAi constructs of flp-14 and flp-18 and evaluated against M. incognita. The transformed plants did not show any visible phenotypic variations suggesting the absence of any off-target effects. Bioefficacy studies with deliberate challenging of M. incognita resulted in 50-80% reduction in infection and multiplication confirming the silencing effect. We have provided evidence for in vitro and in planta silencing of the genes by expression analysis using qRT-PCR. Thus the identified genes and the strategy can be used as a potential tool for the control of M. incognita. This is the first ever report that has revealed the utility of host delivered RNAi of flps to control M. incognita. The strategy can also be extended to other crops and nematodes.


Subject(s)
FMRFamide/chemistry , Peptides/chemistry , Peptides/metabolism , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/parasitology , Tylenchoidea/pathogenicity , Animals , Peptides/genetics , Plants, Genetically Modified/genetics , RNA Interference , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/parasitology
16.
Bioinformation ; 9(4): 182-6, 2013.
Article in English | MEDLINE | ID: mdl-23520432

ABSTRACT

Root-knot nematodes (RKNs), Meloidogyne spp, are found in all temperate and tropical areas, and are among the most damaging plant pathogens worldwide. M. graminincola is an economically important root parasite on upland, lowland and deepwater rice. FMRFamide-like peptides (FLPs) play significant role as neurotransmitters or neuromodulators in the nervous system and proposed as one of the important targets for the plant parasitic nematode management. Therefore, for the first time, we have cloned and characterized two neuropeptide genes (flp-1 and flp-12) from the cDNA of preparasitic second stage juveniles of M. graminicola. The flp-12 contains putative 22 residue long signal peptide at N-terminal suggesting function as an extra-cellular protein. We have found highly conserved motif LFRGR in flp-1. These two flp genes could be interesting and potential targets for functional validation to explore their utility for designing management strategies.

17.
Bioinformation ; 9(2): 67-71, 2013.
Article in English | MEDLINE | ID: mdl-23390348

ABSTRACT

The cereal cyst nematodes belonging to Heterodera avenae group is a complex species consisting of 12 valid species and overlapping morphological characters make them difficult to be distinguished from one another. The non coding internal transcribed spacer sequences, ITS1 and ITS2 including 5.8S region of ribosomal DNA (rDNA) has been very useful for the accurate identification of the species and characterization of molecular genetic variation within the species of plant parasitic nematodes. In the present study, sequencing and PCR-RFLP of rDNA has been used to confirm the species identity. Further it was used to determine the genetic homogeneity of an Indian population used for whole genome and transcriptome sequencing. The Sequence of ITS1 and ITS2 including 5.8S showed approximately 99% similarity with the existing sequences of H. avenae from different countries and confirmed the species identity. Secondary structure of ITS2 region shows that the isolates from India, China, Israel and Australian possess more stable conformational energy than the German strain. Further to characterize the genetic variation within the population, about 200 individual cysts or females were analyzed separately by PCR-RFLP of rDNA with five restriction enzymes that could distinguish H. avenae from other closely related species within the group. This analysis did not reveal any variation within the population indicating it is genetically homogeneous and suitable for next generation sequencing using Illumina platform.

18.
Bioinformation ; 8(13): 617-21, 2012.
Article in English | MEDLINE | ID: mdl-22829742

ABSTRACT

The cereal cyst nematode, Heterodera avenae (Wollenweber, 1924) is one of the most important plant parasitic nematodes of cereals. It is an obligate sedentary endo parasite causing considerable crop losses in wheat, barley and oats worldwide. FMRFamide-like peptides (FLPs) play critical role as neurotransmitters or neuromodulators in the nervous system and proposed as one of the important targets for the plant parasitic nematode management. Therefore, for the first time we have cloned and characterized two neuropeptide genes (flp-12 and flp-16) from the cDNA library of feeding female of H. avenae. Sequence analysis of FLPs revealed that both the neuropeptides are closely related with the parasitic as well as free-living nematodes. The flp-12 contains putative 22 residue long signal peptide at N-terminal suggesting its association with extra-cellular functions, while flp-16 does not contain signal peptide. Besides this, we have found highly conserved motif KFEFIRF in flp-12 and RFGK motif in flp-16. These two flp genes could be interesting and potential targets for functional validation to explore their utility for designing management strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...