Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Neuro Oncol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853689

ABSTRACT

BACKGROUND: The FDA approval of oncolytic herpes simplex-1 virus (oHSV) therapy underscores its therapeutic promise and safety as a cancer immunotherapy. Despite this promise, the current efficacy of oHSV is significantly limited to a small subset of patients largely due to the resistance in tumor and tumor microenvironment (TME). METHODS: RNA sequencing (RNA-Seq) was used to identify molecular targets of oHSV resistance. Intracranial human and murine glioma or breast cancer brain metastasis (BCBM) tumor-bearing mouse models were employed to elucidate the mechanism underlying oHSV therapy-induced resistance. RESULTS: Transcriptome analysis identified IGF2 as one of the top secreted proteins following oHSV treatment. Moreover, IGF2 expression was significantly upregulated in 10 out of 14 recurrent GBM patients after treatment with oHSV, rQNestin34.5v.2 (71.4%) (p=0.0020) (ClinicalTrials.gov, NCT03152318). Depletion of IGF2 substantially enhanced oHSV-mediated tumor cell killing in vitro and improved survival of mice bearing BCBM tumors in vivo. To mitigate the oHSV-induced IGF2 in the TME, we constructed a novel oHSV, oHSV-D11mt, secreting a modified IGF2R domain 11 (IGF2RD11mt) that acts as IGF2 decoy receptor. Selective blocking of IGF2 by IGF2RD11mt significantly increased cytotoxicity, reduced oHSV-induced neutrophils/PMN-MDSCs infiltration, and reduced secretion of immune suppressive/proangiogenic cytokines, while increased CD8+cytotoxic T lymphocytes (CTLs) infiltration, leading to enhanced survival in GBM or BCBM tumor-bearing mice. CONCLUSION: This is the first study reporting that oHSV-induced secreted IGF2 exerts a critical role in resistance to oHSV therapy, which can be overcome by oHSV-D11mt as a promising therapeutic advance for enhanced viro-immunotherapy.

2.
Genes Dev ; 38(5-6): 273-288, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38589034

ABSTRACT

Glioblastoma is universally fatal and characterized by frequent chromosomal copy number alterations harboring oncogenes and tumor suppressors. In this study, we analyzed exome-wide human glioblastoma copy number data and found that cytoband 6q27 is an independent poor prognostic marker in multiple data sets. We then combined CRISPR-Cas9 data, human spatial transcriptomic data, and human and mouse RNA sequencing data to nominate PDE10A as a potential haploinsufficient tumor suppressor in the 6q27 region. Mouse glioblastoma modeling using the RCAS/tv-a system confirmed that Pde10a suppression induced an aggressive glioma phenotype in vivo and resistance to temozolomide and radiation therapy in vitro. Cell culture analysis showed that decreased Pde10a expression led to increased PI3K/AKT signaling in a Pten-independent manner, a response blocked by selective PI3K inhibitors. Single-nucleus RNA sequencing from our mouse gliomas in vivo, in combination with cell culture validation, further showed that Pde10a suppression was associated with a proneural-to-mesenchymal transition that exhibited increased cell adhesion and decreased cell migration. Our results indicate that glioblastoma patients harboring PDE10A loss have worse outcomes and potentially increased sensitivity to PI3K inhibition.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Animals , Mice , Glioblastoma/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Haploinsufficiency , Glioma/genetics , PTEN Phosphohydrolase/genetics , Phosphoric Diester Hydrolases/genetics , Cell Line, Tumor , Brain Neoplasms/genetics
3.
Cells ; 12(21)2023 11 02.
Article in English | MEDLINE | ID: mdl-37947640

ABSTRACT

Glioblastoma is the most common malignant primary brain tumor. The outcome is dismal, despite the multimodal therapeutic approach that includes surgical resection, followed by radiation and chemotherapy. The quest for novel therapeutic targets to treat glioblastoma is underway. FKBP38, a member of the immunophilin family of proteins, is a multidomain protein that plays an important role in the regulation of cellular functions, including apoptosis and autophagy. In this study, we tested the role of FKBP38 in glioblastoma tumor biology. Expression of FKBP38 was upregulated in the patient-derived primary glioblastoma neurospheres (GBMNS), compared to normal human astrocytes. Attenuation of FKBP38 expression decreased the viability of GBMNSs and increased the caspase 3/7 activity, indicating that FKBP38 is required for the survival of GBMNSs. Further, the depletion of FKBP38 significantly reduced the number of neurospheres that were formed, implying that FKBP38 regulates the self-renewal of GBMNSs. Additionally, the transient knockdown of FKBP38 increased the LC3-II/I ratio, suggesting the induction of autophagy with the depletion of FKBP38. Further investigation showed that the negative regulation of autophagy by FKBP38 in GBMNSs is mediated through the JNK/C-Jun-PTEN-AKT pathway. In vivo, FKBP38 depletion significantly extended the survival of tumor-bearing mice. Overall, our results suggest that targeting FKBP38 imparts an anti-glioblastoma effect by inducing apoptosis and autophagy and thus can be a potential therapeutic target for glioblastoma therapy.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Humans , Mice , Apoptosis , Brain Neoplasms/metabolism , Glioblastoma/metabolism
4.
J Clin Invest ; 133(13)2023 07 03.
Article in English | MEDLINE | ID: mdl-37395282

ABSTRACT

Human endogenous retroviruses (HERVs) are ancestral viral relics that constitute nearly 8% of the human genome. Although normally silenced, the most recently integrated provirus HERV-K (HML-2) can be reactivated in certain cancers. Here, we report pathological expression of HML-2 in malignant gliomas in both cerebrospinal fluid and tumor tissue that was associated with a cancer stem cell phenotype and poor outcomes. Using single-cell RNA-Seq, we identified glioblastoma cellular populations with elevated HML-2 transcripts in neural progenitor-like cells (NPC-like) that drive cellular plasticity. Using CRISPR interference, we demonstrate that HML-2 critically maintained glioblastoma stemness and tumorigenesis in both glioblastoma neurospheres and intracranial orthotopic murine models. Additionally, we demonstrate that HML-2 critically regulated embryonic stem cell programs in NPC-derived astroglia and altered their 3D cellular morphology by activating the nuclear transcription factor OCT4, which binds to an HML-2-specific long-terminal repeat (LTR5Hs). Moreover, we discovered that some glioblastoma cells formed immature retroviral virions, and inhibiting HML-2 expression with antiretroviral drugs reduced reverse transcriptase activity in the extracellular compartment, tumor viability, and pluripotency. Our results suggest that HML-2 fundamentally contributes to the glioblastoma stem cell niche. Because persistence of glioblastoma stem cells is considered responsible for treatment resistance and recurrence, HML-2 may serve as a unique therapeutic target.


Subject(s)
Endogenous Retroviruses , Glioblastoma , Humans , Animals , Mice , Endogenous Retroviruses/genetics , Glioblastoma/genetics , Stem Cell Niche , Proviruses/genetics
5.
Mol Ther Oncolytics ; 28: 171-181, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36789106

ABSTRACT

High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) molecule that plays an important role in inflammation and tumorigenesis. Receptor for advanced glycation end products (RAGE) is one of the major receptors to which extracellular HMGB1 binds to mediate its activity. RAGE is highly expressed on the endothelial cells (ECs) and regulates endothelial permeability during inflammation. Here, we introduced the endogenous secretory form of RAGE (esRAGE) as a decoy receptor for RAGE ligands into an oncolytic herpes simplex virus 1 (oHSV) (OVesRAGE), which, upon release, can function to block RAGE signaling. OVesRAGE significantly decreased phosphorylation of MEK1/2 and Erk and increased cleaved PARP in glioblastoma (GBM) cells in vitro and in vivo. oHSV-infected GBM cells co-cultured with ECs were used to test OVesRAGE effect on EC activation, vessel leakiness, virus replication, and tumor cell killing. OVesRAGE could effectively secrete esRAGE and rescue virus-induced EC migration and activation. Reduced EC activation facilitated virus replication in tumor cells when co-cultured with ECs. Finally, OVesRAGE significantly enhanced therapeutic efficacy in GBM-bearing mice. Collectively, our data demonstrate that HMGB1-RAGE signaling could be a promising target and that its inhibition is a feasible approach to improve the efficacy of oHSV therapy.

6.
J Funct Biomater ; 14(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36826851

ABSTRACT

Damage to intervertebral discs (IVD) can lead to chronic pain and disability, and no current treatments can fully restore their function. Some non-surgical treatments have shown promise; however, these approaches are generally limited by burst release and poor localization of diverse molecules. In this proof-of-concept study, we developed a nanoparticle (NP) delivery system to efficiently deliver high- and low-solubility drug molecules. Nanoparticles of cellulose acetate and polycaprolactone-polyethylene glycol conjugated with 1-oxo-1H-pyrido [2,1-b][1,3]benzoxazole-3-carboxylic acid (PBC), a novel fluorescent dye, were prepared by the oil-in-water emulsion. Two drugs, a water insoluble indomethacin (IND) and a water soluble 4-aminopyridine (4-AP), were used to study their release patterns. Electron microscopy confirmed the spherical nature and rough surface of nanoparticles. The particle size analysis revealed a hydrodynamic radius ranging ~150-162 nm based on dynamic light scattering. Zeta potential increased with PBC conjugation implying their enhanced stability. IND encapsulation efficiency was almost 3-fold higher than 4-AP, with release lasting up to 4 days, signifying enhanced solubility, while the release of 4-AP continued for up to 7 days. Nanoparticles and their drug formulations did not show any apparent cytotoxicity and were taken up by human IVD nucleus pulposus cells. When injected into coccygeal mouse IVDs in vivo, the nanoparticles remained within the nucleus pulposus cells and the injection site of the nucleus pulposus and annulus fibrosus of the IVD. These fluorescent nano-formulations may serve as a platform technology to deliver therapeutic agents to IVDs and other tissues that require localized drug injections.

7.
J Immunother Cancer ; 11(2)2023 02.
Article in English | MEDLINE | ID: mdl-36796878

ABSTRACT

BACKGROUND: Mammalian cells have developed multiple intracellular mechanisms to defend against viral infections. These include RNA-activated protein kinase (PKR), cyclic GMP-AMP synthase and stimulation of interferon genes (cGAS-STING) and toll-like receptor-myeloid differentiation primary response 88 (TLR-MyD88). Among these, we identified that PKR presents the most formidable barrier to oncolytic herpes simplex virus (oHSV) replication in vitro. METHODS: To elucidate the impact of PKR on host responses to oncolytic therapy, we generated a novel oncolytic virus (oHSV-shPKR) which disables tumor intrinsic PKR signaling in infected tumor cells. RESULTS: As anticipated, oHSV-shPKR resulted in suppression of innate antiviral immunity and improves virus spread and tumor cell lysis both in vitro and in vivo. Single cell RNA sequencing combined with cell-cell communication analysis uncovered a strong correlation between PKR activation and transforming growth factor beta (TGF-ß) immune suppressive signaling in both human and preclinical models. Using a murine PKR targeting oHSV, we found that in immune-competent mice this virus could rewire the tumor immune microenvironment to increase the activation of antigen presentation and enhance tumor antigen-specific CD8 T cell expansion and activity. Further, a single intratumoral injection of oHSV-shPKR significantly improved the survival of mice bearing orthotopic glioblastoma. To our knowledge, this is the first report to identify dual and opposing roles of PKR wherein PKR activates antivirus innate immunity and induces TGF-ß signaling to inhibit antitumor adaptive immune responses. CONCLUSIONS: Thus, PKR represents the Achilles heel of oHSV therapy, restricting both viral replication and antitumor immunity, and an oncolytic virus that can target this pathway significantly improves response to virotherapy.


Subject(s)
Brain Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Animals , Humans , Mice , Brain Neoplasms/pathology , Oncolytic Virotherapy/methods , Simplexvirus , Transforming Growth Factor beta , Tumor Microenvironment , eIF-2 Kinase/metabolism
8.
Neurooncol Adv ; 4(1): vdac095, 2022.
Article in English | MEDLINE | ID: mdl-35875691

ABSTRACT

Background: The prognosis of glioblastoma (GBM) remains dismal because therapeutic approaches have limited effectiveness. A new targeted treatment using MEK inhibitors, including trametinib, has been proposed to improve GBM therapy. Trametinib had a promising preclinical effect against several cancers, but its adaptive treatment resistance precluded its clinical translation in GBM. Previously, we have demonstrated that protein arginine methyltransferase 5 (PRMT5) is upregulated in GBM and its inhibition promotes apoptosis and senescence in differentiated and stem-like tumor cells, respectively. We tested whether inhibition of PRMT5 can enhance the efficacy of trametinib against GBM. Methods: Patient-derived primary GBM neurospheres (GBMNS) with transient PRMT5 knockdown were treated with trametinib and cell viability, proliferation, cell cycle progression, ELISA, and western blot were analyzed. In vivo, NSG mice were intracranially implanted with PRMT5-intact and -depleted GBMNS, treated with trametinib by daily oral gavage, and observed for tumor progression and mice survival rate. Results: PRMT5 depletion enhanced trametinib-induced cytotoxicity in GBMNS. PRMT5 knockdown significantly decreased trametinib-induced AKT and ERBB3 escape pathways. However, ERBB3 inhibition alone failed to block trametinib-induced AKT activity suggesting that the enhanced antitumor effect imparted by PRMT5 knockdown in trametinib-treated GBMNS resulted from AKT inhibition and not ERBB3 inhibition. In orthotopic murine xenograft models, PRMT5-depletion extended the survival of tumor-bearing mice, and combination with trametinib further increased survival. Conclusion: Combined PRMT5/MEK inhibition synergistically inhibited GBM in animal models and is a promising strategy for GBM therapy.

9.
ACS Appl Bio Mater ; 5(6): 2851-2861, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35642544

ABSTRACT

Approximately half of annual musculoskeletal injuries in the US involve tendon tears. The naturally hypocellular and hypovascular tendon environment makes tendons injury-prone and heal slowly. Tendon tissue engineering strategies often use biomimetic scaffolds combined with bioactive factors and/or cells to enhance healing. FDA-approved growth factors to promote tendon healing are lacking, which highlights the need for safe and effective bioactive factors. Our previous work evaluated insulin as a bioactive factor and identified an optimal dose to promote in vitro mesenchymal stem cell survival, division, and tenogenesis. The present work evaluates the ability of insulin-functionalized electrospun nanofiber matrices with or without mesenchymal stem cells to enhance tendon repair in a rat Achilles injury model. Electrospun nanofiber matrices were functionalized with insulin, cultured with or without mesenchymal stem cells, and sutured to transected Achilles tendons in rats. We analyzed rat tendons 4 and 8 weeks after surgery for the tendon morphology, collagen production, and mechanical properties. Bioactive insulin-functionalized fiber matrices with mesenchymal stem cells resulted in significantly increased collagen I and III at 4 and 8 weeks postsurgery. Additionally, these matrices supported highly aligned collagen fibrils in the regenerated tendon tissue at 8 weeks. However, treatment- and control-regenerated tissues had similar tensile properties at 8 weeks, which were less than that of the native Achilles tendon. Our preliminary results establish the benefits of insulin-functionalized fiber matrices in promoting higher levels of collagen synthesis and alignment needed for functional recovery of tendon repair.


Subject(s)
Achilles Tendon , Mesenchymal Stem Cells , Tendon Injuries , Animals , Bone Marrow , Cell Proliferation , Collagen/pharmacology , Insulin/pharmacology , Rats , Tendon Injuries/therapy , Tissue Scaffolds
10.
Sci Rep ; 12(1): 6902, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35477752

ABSTRACT

Comprising approximately 8% of our genome, Human Endogenous RetroViruses (HERVs) represent a class of germline retroviral infections that are regulated through epigenetic modifications. In cancer cells, which often have epigenetic dysregulation, HERVs have been implicated as potential oncogenic drivers. However, their role in gliomas is not known. Given the link between HERV expression in cancer cell lines and the distinct epigenetic dysregulation in gliomas, we utilized a tailored bioinformatic pipeline to characterize and validate the glioma retrotranscriptome and correlate HERV expression with locus-specific epigenetic modifications. We identified robust overexpression of multiple HERVs in our cell lines, including a retroviral transcript, HML-6, at 19q13.43b in glioblastoma cells. HERV expression inversely correlated with loci-specific DNA methylation. HML-6 contains an intact open reading frame encoding a small envelope protein, ERVK3-1. Increased expression of ERVK3-1 in GBM patients is associated with a poor prognosis independent of IDH-mutational status. Our results suggest that not only is HML-6 uniquely overexpressed in highly invasive cell lines and tissue samples, but also its gene product, ERVK3-1, may be associated with reduced survival in GBM patients. These results may have implications for both the tumor biology of GBM and the role of ERVK3-1 as a potential therapeutic target.


Subject(s)
Endogenous Retroviruses , Glioblastoma , Computational Biology , DNA Methylation , Endogenous Retroviruses/genetics , Glioblastoma/genetics , Humans , Open Reading Frames
11.
Clin Cancer Res ; 28(7): 1460-1473, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35022322

ABSTRACT

PURPOSE: Oncolytic herpes simplex virus-1 (oHSV) infection of brain tumors activates NOTCH, however the consequences of NOTCH on oHSV-induced immunotherapy is largely unknown. Here we evaluated the impact of NOTCH blockade on virus-induced immunotherapy. EXPERIMENTAL DESIGN: RNA sequencing (RNA-seq), TCGA data analysis, flow cytometry, Luminex- and ELISA-based assays, brain tumor animal models, and serum analysis of patients with recurrent glioblastoma (GBM) treated with oHSV was used to evaluate the effect of NOTCH signaling on virus-induced immunotherapy. RESULTS: TCGA data analysis of patients with grade IV glioma and oHSV treatment of experimental brain tumors in mice showed that NOTCH signaling significantly correlated with a higher myeloid cell infiltration. Immunofluorescence staining and RNA-seq uncovered a significant induction of Jag1 (NOTCH ligand) expression in infiltrating myeloid cells upon oHSV infection. Jag1-expressing macrophages further spread NOTCH activation in the tumor microenvironment (TME). NOTCH-activated macrophages increased the secretion of CCL2, which further amplified myeloid-derived suppressor cells. CCL2 and IL10 induction was also observed in serum of patients with recurrent GBM treated with oHSV (rQnestin34.5; NCT03152318). Pharmacologic blockade of NOTCH signaling rescued the oHSV-induced immunosuppressive TME and activated a CD8-dependent antitumor memory response, resulting in a therapeutic benefit. CONCLUSIONS: NOTCH-induced immunosuppressive myeloid cell recruitment limited antitumor immunity. Translationally, these findings support the use of NOTCH inhibition in conjunction with oHSV therapy.


Subject(s)
Glioblastoma , Myeloid-Derived Suppressor Cells , Oncolytic Virotherapy , Oncolytic Viruses , Animals , Cell Line, Tumor , Glioblastoma/pathology , Humans , Immunotherapy , Mice , Myeloid-Derived Suppressor Cells/metabolism , Neoplasm Recurrence, Local/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Simplexvirus , Tumor Microenvironment , Xenograft Model Antitumor Assays
12.
Cancers (Basel) ; 13(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205611

ABSTRACT

Protein phosphatase 2A (PP2A) is a ubiquitous serine/threonine phosphatase implicated in a wide variety of regulatory cellular functions. PP2A is abundant in the mammalian nervous system, and dysregulation of its cellular functions is associated with myriad neurodegenerative disorders. Additionally, PP2A has oncologic implications, recently garnering attention and emerging as a therapeutic target because of the antitumor effects of a potent PP2A inhibitor, LB100. LB100 abrogation of PP2A is believed to exert its inhibitory effects on tumor progression through cellular chemo- and radiosensitization to adjuvant agents. An updated and unifying review of PP2A biology and inhibition with LB100 as a therapeutic strategy for targeting cancers of the nervous system is needed, as other reviews have mainly covered broader applications of LB100. In this review, we discuss the role of PP2A in normal cells and tumor cells of the nervous system. Furthermore, we summarize current evidence regarding the therapeutic potential of LB100 for treating solid tumors of the nervous system.

13.
Differentiation ; 120: 1-9, 2021.
Article in English | MEDLINE | ID: mdl-34062407

ABSTRACT

Tendon injuries are common and account for up to 50% of musculoskeletal injuries in the United States. The poor healing nature of the tendon is attributed to poor vascularization and cellular composition. In the absence of FDA-approved growth factors for tendon repair, engineering strategies using bioactive factors, donor cells, and delivery matrices to promote tendon repair and regeneration are being explored. Growth factor alternatives in the form of small molecules, donor cells, and progenitors offer several advantages and enhance the tendon healing response. Small drug molecules and peptides offer stability over growth factors that are known to suffer from relatively short biological half-lives. The primary focus of this study was to assess the ability of the exendin-4 (Ex-4) peptide, a glucagon-like peptide 1 (GLP-1) receptor agonist, to induce tenocyte differentiation in bone marrow-derived human mesenchymal stem cells (hMSCs). We treated hMSCs with varied doses of Ex-4 in culture media to evaluate proliferation and tendonogenic differentiation. A 20 nM Ex-4 concentration was optimal for promoting cell proliferation and tendonogenic differentiation. Tendonogenic differentiation of hMSCs was evaluated via gene expression profile, immunofluorescence, and biochemical analyses. Collectively, the levels of tendon-related transcription factors (Mkx and Scx) and extracellular matrix (Col-I, Dcn, Bgn, and Tnc) genes and proteins were elevated compared to media without Ex-4 and other controls including insulin and IGF-1 treatments. The tendonogenic factor Ex-4 in conjunction with hMSCs appear to enhance tendon regeneration.


Subject(s)
Cell Differentiation , Exenatide/pharmacology , Incretins/pharmacology , Mesenchymal Stem Cells/drug effects , Tenocytes/metabolism , Biglycan/metabolism , Cell Proliferation , Cells, Cultured , Collagen Type I/metabolism , Decorin/metabolism , Humans , Insulin/pharmacology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Tenascin/metabolism , Tenocytes/cytology
14.
Neurosurgery ; 89(3): 343-363, 2021 08 16.
Article in English | MEDLINE | ID: mdl-33693933

ABSTRACT

Hereditary cancer predisposition syndromes (HCS) become more recognizable as the knowledge about them expands, and genetic testing becomes more affordable. In this review, we discussed the known HCS that predispose to central and peripheral nervous system tumors. Different genetic phenomena were highlighted, and the important cellular biological alterations were summarized. Genetic mosaicism and germline mutations are features of HCS, and recently, they were described in normal population and as modifiers for the genetic landscape of sporadic tumors. Description of the tumors arising in these conditions was augmented by representative cases explaining the main pathological findings. Clinical spectrum of the syndromes and diagnostic criteria were tabled to outline their role in defining these disorders. Interestingly, precision medicine has found its way to help these groups of patients by offering targeted preventive measures. Understanding the signaling pathway alteration of mammalian target of rapamycin (mTOR) in tuberous sclerosis helped introducing mTOR inhibitors as a prophylactic treatment in these patients. More research to define the germline genetic alterations and resulting cellular signaling perturbations is needed for effective risk-reducing interventions beyond prophylactic surgeries.


Subject(s)
Neoplastic Syndromes, Hereditary , Peripheral Nervous System Neoplasms , Tuberous Sclerosis , Genetic Predisposition to Disease/genetics , Humans , Mutation , Neoplastic Syndromes, Hereditary/genetics , Tuberous Sclerosis/genetics
15.
Neuro Oncol ; 23(9): 1481-1493, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33556161

ABSTRACT

BACKGROUND: Despite multi-model therapy of maximal surgical resection, radiation, chemotherapy, and tumor-treating fields, the median survival of glioblastoma (GBM) patients is less than 15 months. Protein arginine methyltransferase 5 (PRMT5) catalyzes the symmetric dimethylation of arginine residues and is overexpressed in GBM. Inhibition of PRMT5 causes senescence in stem-like GBM tumor cells. LB100, a first-in-class small molecular inhibitor of protein phosphatase 2A (PP2A), can sensitize therapy-resistant tumor cells. Here, we tested the anti-GBM effect of concurrent PRMT5 and PP2A inhibition. METHODS: Patient-derived primary GBM neurospheres (GBMNS), transfected with PRMT5 target-specific siRNA, were treated with LB100 and subjected to in vitro assays including PP2A activity and western blot. The intracranial mouse xenograft model was used to test the in vivo antitumor efficacy of combination treatment. RESULTS: We found that PRMT5 depletion increased PP2A activity in GBMNS. LB100 treatment significantly reduced the viability of PRMT5-depleted GBMNS compared to PRMT5-intact GBMNS. LB100 enhanced G1 cell cycle arrest induced by PRMT5 depletion. Combination therapy also increased the expression of phospho-MLKL. Necrostatin-1 rescued PRMT5-depleted cells from the cytotoxic effects of LB100, indicating that necroptosis caused the enhanced cytotoxicity of combination therapy. In the in vivo mouse tumor xenograft model, LB100 treatment combined with transient depletion of PRMT5 significantly decreased tumor size and prolonged survival, while LB100 treatment alone had no survival benefit. CONCLUSION: Overall, combined PRMT5 and PP2A inhibition had significantly greater antitumor effects than PRMT5 inhibition alone.


Subject(s)
Glioblastoma , Animals , Cell Line, Tumor , Glioblastoma/drug therapy , Humans , Mice , Piperazines , Protein Phosphatase 2 , Protein-Arginine N-Methyltransferases/genetics , Xenograft Model Antitumor Assays
16.
Cells ; 10(1)2021 01 11.
Article in English | MEDLINE | ID: mdl-33440687

ABSTRACT

Protein arginine methylation is a common post-translational modification that plays a pivotal role in cellular regulation. Protein arginine methyltransferases (PRMTs) catalyze the modification of target proteins by adding methyl groups to the guanidino nitrogen atoms of arginine residues. Protein arginine methylation takes part in epigenetic and cellular regulation and has been linked to neurodegenerative diseases, metabolic diseases, and tumor progression. Aberrant expression of PRMTs is associated with the development of brain tumors such as glioblastoma and medulloblastoma. Identifying PRMTs as plausible contributors to tumorigenesis has led to preclinical and clinical investigations of PRMT inhibitors for glioblastoma and medulloblastoma therapy. In this review, we discuss the role of arginine methylation in cancer biology and provide an update on the use of small molecule inhibitors of PRMTs to treat glioblastoma, medulloblastoma, and other cancers.


Subject(s)
Arginine/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/therapy , Carcinogenesis/pathology , Humans , Methylation , Models, Biological , Protein-Arginine N-Methyltransferases/metabolism
17.
Cancers (Basel) ; 12(4)2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32340193

ABSTRACT

Vascularization is a common pathology for many solid tumors, and therefore anti-angiogenic strategies are being investigated as a therapeutic target for treatment. Numerous studies are also being conducted regarding the effects of oncolytic viruses, including ImlygicTM, an FDA approved oncolytic herpes simplex virus-1 (oHSV) for the treatment of highly vascularized tumors such as Kaposi sarcoma (NCT04065152), and brain tumors. To our knowledge, the effects of combining oncolytic HSV with angiogenesis inhibition on endothelial cell activation has not been previously described. Here, we tested the effects of Rapid Antiangiogenesis Mediated By Oncolytic Virus (RAMBO), an oHSV which expresses a potent anti-angiogenic gene Vasculostatin on endothelial cell activation in heavily vascularized solid tumors. oHSV treatment induces endothelial cell activation, which inhibits virus propagation and oncolysis in adjacent tumor cells in vitro. Consistently, this was also observed in intravital imaging of intracranial tumor-bearing mice in vivo where infected tumor endothelial cells could efficiently clear the virus without cell lysis. Quantitative real-time PCR (Q-PCR), leukocyte adhesion assay, and fluorescent microscopy imaging data, however, revealed that RAMBO virus significantly decreased expression of endothelial cell activation markers and leukocyte adhesion, which in turn increased virus replication and cytotoxicity in endothelial cells. In vivo RAMBO treatment of subcutaneously implanted sarcoma tumors significantly reduced tumor growth in mice bearing sarcoma compared to rHSVQ. In addition, histological analysis of RAMBO-treated tumor tissues revealed large areas of necrosis and a statistically significant reduction in microvessel density (MVD). This study provides strong preclinical evidence of the therapeutic benefit for the use of RAMBO virus as a treatment option for highly vascularized tumors.

18.
Neuro Oncol ; 21(9): 1131-1140, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31063549

ABSTRACT

BACKGROUND: Hyperactivation of the RAS-RAF-MEK-ERK signaling pathway is exploited by glioma cells to promote their growth and evade apoptosis. MEK activation in tumor cells can increase replication of ICP34.5-deleted herpes simplex virus type 1 (HSV-1), but paradoxically its activation in tumor-associated macrophages promotes a pro-inflammatory signaling that can inhibit virus replication and propagation. Here we investigated the effect of blocking MEK signaling in conjunction with oncolytic HSV-1 (oHSV) for brain tumors. METHODS: Infected glioma cells co-cultured with microglia or macrophages treated with or without trametinib were used to test trametinib effect on macrophages/microglia. Enzyme-linked immunosorbent assay, western blotting, and flow cytometry were utilized to evaluate the effect of the combination therapy. Pharmacokinetic (PK) analysis of mouse plasma and brain tissue was used to evaluate trametinib delivery to the CNS. Intracranial human and mouse glioma-bearing immune deficient and immune competent mice were used to evaluate the antitumor efficacy. RESULT: Oncolytic HSV treatment rescued trametinib-mediated feedback reactivation of the mitogen-activated protein kinase signaling pathway in glioma. In vivo, PK analysis revealed enhanced blood-brain barrier penetration of trametinib after oHSV treatment. Treatment by trametinib, a MEK kinase inhibitor, led to a significant reduction in microglia- and macrophage-derived tumor necrosis factor alpha (TNFα) secretion in response to oHSV treatment and increased survival of glioma-bearing mice. Despite the reduced TNFα production observed in vivo, the combination treatment activated CD8+ T-cell mediated immunity and increased survival in a glioma-bearing immune-competent mouse model. CONCLUSION: This study provides a rationale for combining oHSV with trametinib for the treatment of brain tumors.


Subject(s)
Blood-Brain Barrier/metabolism , Brain Neoplasms/therapy , CD8-Positive T-Lymphocytes/drug effects , Glioblastoma/therapy , Herpesvirus 1, Human , Macrophages/drug effects , Microglia/drug effects , Oncolytic Virotherapy/methods , Protein Kinase Inhibitors/pharmacology , Pyridones/pharmacology , Pyrimidinones/pharmacology , Animals , Brain Neoplasms/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Disease Models, Animal , Glioblastoma/immunology , Glioma/immunology , Glioma/therapy , Humans , Immunocompetence , Macrophages/immunology , Mice , Microglia/immunology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , RAW 264.7 Cells , Survival Rate , Tumor Necrosis Factor-alpha/immunology , Xenograft Model Antitumor Assays
19.
Mol Cancer Ther ; 18(6): 1127-1136, 2019 06.
Article in English | MEDLINE | ID: mdl-30926634

ABSTRACT

Integrin ß1 receptor, expressed on the surface of tumor cells and macrophages in the tumor microenvironment (TME), has been implicated in both tumor progression and resistance to multiple modalities of therapy. OS2966 is the first clinical-ready humanized monoclonal antibody to block integrin ß1 and was recently orphan designated by the FDA Office of Orphan Products Development. Here, we tested therapeutic potential of OS2966-mediated integrin ß1 blockade to enhance the efficacy of oncolytic herpes simplex virus-1 (oHSV) through evaluation of virus replication, tumor cell killing efficiency, effect on the antiviral signaling pathway, co-culture assays of oHSV-infected cells with macrophages, and in vivo bioluminescence imaging on mammary fat pad triple-negative breast cancer xenograft and subcutaneous and intracranial glioma xenografts. OS2966 treatment decreased interferon signaling and proinflammatory cytokine induction in oHSV-treated tumor cells and inhibited migration of macrophages, resulting in enhanced oHSV replication and cytotoxicity. OS2966 treatment also significantly enhanced oHSV replication and oHSV-mediated antitumor efficacy in orthotopic xenograft models, including triple-negative breast cancer and glioblastoma. The results demonstrated the synergistic potential of the combinatory treatment approach with OS2966 to improve antitumor efficacy of conventional oHSV therapy.


Subject(s)
Antibodies, Blocking/therapeutic use , Herpesvirus 1, Human/physiology , Integrin beta1/immunology , Oncolytic Virotherapy/methods , Oncolytic Viruses/physiology , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Cell Line, Tumor , Cell Movement/immunology , Coculture Techniques , Combined Modality Therapy/methods , Female , Glioma/metabolism , Glioma/pathology , Glioma/therapy , Humans , Macrophages/metabolism , Mice , Mice, Nude , RAW 264.7 Cells , Virus Replication/immunology , Xenograft Model Antitumor Assays
20.
Mol Ther Oncolytics ; 12: 93-102, 2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30719499

ABSTRACT

HMGB1 is a ubiquitously expressed intracellular protein that binds DNA and transcription factors and regulates chromosomal structure and function. Under conditions of cell death or stress, it is actively or passively released by cells into the extracellular environment, where it functions as damage-associated molecular pattern (DAMP) that orchestrates pro-inflammatory cytokine release and inflammation. Our results demonstrate that HMGB1 is secreted in the tumor microenvironment after oncolytic HSV (oHSV) infection in vitro and in vivo. The impact of secreted HMGB1 on tumor growth and response to oncolytic viral therapy was evaluated by using HMGB1-blocking antibodies in vitro and in mice bearing intracranial tumors. IVIS and MRI imaging was utilized to visualize in real time virus spread, tumor growth, and changes in edema in mice. Our data showed that HMGB1 released in tumor microenvironment orchestrated increased vascular leakiness and edema. Further HMGB1 blocking antibodies rescued vascular leakiness and enhanced survival of intracranial glioma-bearing mice treated with oHSV.

SELECTION OF CITATIONS
SEARCH DETAIL
...