Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(15): 155101, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38682996

ABSTRACT

The sheared-flow-stabilized Z pinch concept has been studied extensively and is able to produce fusion-relevant plasma parameters along with neutron production over several microseconds. We present here elevated electron temperature results spatially and temporally coincident with the plasma neutron source. An optical Thomson scattering apparatus designed for the FuZE device measures temperatures in the range of 1-3 keV on the axis of the device, 20 cm downstream of the nose cone. The 17-fiber system measures the radial profiles of the electron temperature. Scanning the laser time with respect to the neutron pulse time over a series of discharges allows the reconstruction of the T_{e} temporal response, confirming that the electron temperature peaks simultaneously with the neutron output, as well as the pinch current and inductive voltage generated within the plasma. Comparison to spectroscopic ion temperature measurements suggests a plasma in thermal equilibrium. The elevated T_{e} confirms the presence of a plasma assembled on axis, and indicates limited radiative losses, demonstrating a basis for scaling this device toward net gain fusion conditions.

2.
Phys Rev Lett ; 132(15): 155102, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38683000

ABSTRACT

We present the first experimental study of plasmoid formation in a magnetic reconnection layer undergoing rapid radiative cooling, a regime relevant to extreme astrophysical plasmas. Two exploding aluminum wire arrays, driven by the Z machine, generate a reconnection layer (S_{L}≈120) in which the cooling rate far exceeds the hydrodynamic transit rate (τ_{hydro}/τ_{cool}>100). The reconnection layer generates a transient burst of >1 keV x-ray emission, consistent with the formation and subsequent rapid cooling of the layer. Time-gated x-ray images show fast-moving (up to 50 km s^{-1}) hotspots in the layer, consistent with the presence of plasmoids in 3D resistive magnetohydrodynamic simulations. X-ray spectroscopy shows that these hotspots generate the majority of Al K-shell emission (around 1.6 keV) prior to the onset of cooling, and exhibit temperatures (170 eV) much greater than that of the plasma inflows and the rest of the reconnection layer, thus providing insight into the generation of high-energy radiation in radiatively cooled reconnection events.

3.
Rev Sci Instrum ; 94(2): 023508, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36859043

ABSTRACT

We report the first optical Thomson scattering measurements inside a high electron temperature (≳1 keV) and moderate electron density (mid 1016 cm-3) plasma. This diagnostic has been built to provide critical plasma parameters, such as electron temperature and density, for Advanced Research Projects Agency-Energy-supported fusion-energy concepts. It uses an 8 J laser at 532 nm in 1.5 ns to measure the high frequency feature of the Thomson scattering profile at 17 locations along the probe axis. It is able to measure electron density from 5 × 1017 cm-3 to several 1019 cm-3 and electron temperatures from tens of eV to several keV. Here, we describe the design, deployment, and analysis on the sheared flow stabilized Z-pinch machine at Zap Energy named FuZE. The probe beam is aimed at an axial distance of 20 cm from the central electrode and is timed within the temporal envelope of neutron emission. The high temperature and moderate density plasmas generated on FuZE lie in an unconventional regime for Thomson scattering as they are between tokamaks and laser-produced plasmas. We described the analysis considerations in this regime, show that the electron density was below 5 × 1016 cm-3 at all times during these measurements, and present a sample shot where the inferred electron temperature varied from 167 ± 16 eV to 700 ± 85 eV over 1.6 cm.

4.
Rev Sci Instrum ; 92(9): 093503, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34598492

ABSTRACT

A free space collective Thomson scattering system has been developed to study pulsed power produced plasmas. While most Thomson scattering diagnostics on pulsed power machines use a bundle of fibers to couple scattered light from the plasma to the spectrometer, this system used free space coupling of the light, which enabled a spatially continuous image of the plasma. Initial experiments with this diagnostic were performed on an inverse wire array generated by a 200 kA, 1100 ns rise time pulse power generator. The capabilities of this diagnostic were demonstrated by using the low frequency ion acoustic wave feature of the Thomson scattering spectra to measure the plasma flow velocity. The diagnostic was demonstrated to measure velocities between 20 and 40 km/s with an error of 4.7 km/s when fitting with a 600 µm spatial resolution or 8.9 km/s when fitting with a 150 µm spatial resolution. In some experiments, the diagnostic observed a bow shock in the plasma flow as the scattering intensity increased and flow velocity decreased.

5.
Rev Sci Instrum ; 89(10): 10C109, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399882

ABSTRACT

A single channel sub-nanosecond time-resolved Thomson scattering system used for pulsed power-driven high energy density plasma measurements has been upgraded to give electron temperatures at two different times and from two different angles simultaneously. This system was used to study plasma jets created from a 15 µm thick radial Al foil load on a 1 MA pulsed power machine. Two laser pulses were generated by splitting the initial 2.3 ns duration, 10 J, 526.5 nm laser beam into two pulses, each with 2.5 J, and delaying one relative to the other by between 3 and 14 ns. Time resolution within each pulse was obtained using a streak camera to record the scattered spectra from the two beams from two scattering angles. Analysis of the scattering profile showed that the electron temperature of the Al jet increased from 20 eV up to as much as 45 eV within about 2 ns by inverse bremsstrahlung for both laser pulses. The Thomson scattering results from jets formed with opposite current polarities showed different laser heating of the electrons, as well as possibly different ion temperatures. The two-angle scattering determined that the electron density of the plasma jet was at least 2 × 1018 cm-3.

6.
Rev Sci Instrum ; 87(11): 11D407, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910685

ABSTRACT

We have shown that Zeeman splitting of the sodium (Na) D-lines at 5890 and 5896 Å can be used to measure the magnetic field (B-field) produced in high current pulsed power experiments. We have measured the B-field next to a return current conductor in a hybrid X-pinch experiment near a peak current of about 500 kA. Na is deposited on the conductor and then is desorbed and excited by radiation from the hybrid X-pinch. The D-line emission spectrum implies B-fields of about 20 T with a return current post of 4 mm diameter or up to 120 T with a return current wire of 0.455 mm diameter. These measurements were consistent or lower than the expected B-field, thereby showing that basic Zeeman splitting can be used to measure the B-field in a pulsed-power-driven high-energy-density (HED) plasma experiment. We hope to extend these measurement techniques using suitable ionized species to measurements within HED plasmas.

7.
Rev Sci Instrum ; 87(10): 103506, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27802687

ABSTRACT

We have shown that the Zeeman splitting of the sodium (Na) D-lines at 5890 Å and 5896 Å can be used to measure the magnetic field produced by the current flowing in an exploding wire prior to wire explosion. After wire explosion, the lines in question are either not visible in the strong continuum from the exploding wire plasma, or too broad to measure the magnetic field by methods discussed in this paper. We have determined magnetic fields in the range 10-20 T, which lies between the small field and Paschen-Back regimes for the Na D-lines, over a period of about 70 ns on a 10 kA peak current machine. The Na source is evaporated drops of water with a 0.171 M NaCl solution deposited on the wire. The Na desorbs from the wire as it heats up, and the excited vapor atoms are seen in emission lines. The measured magnetic field, determined by the Zeeman splitting of these emission lines, estimates the average radial location of the emitting Na vapor as a function of time under the assumption the current flows only in the wire during the time of the measurement.

SELECTION OF CITATIONS
SEARCH DETAIL
...